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Quaternion Analysis of Momenta and Forces Acting Upon a Rigid Body 

We will start by considering the movements of a mass particle moving with respect to a 
central location and how systems of forces may be recast in a number of alternative formulations, 
leading up to a wrench, which is a special instance of a quaternion. 

The basic arrangement is a reference point (! ) and a moving mass (m ), which is displaced 
from the reference point by a spatial interval (r ).  Any location will do for a reference point, but 
there are some locations that make sense because they simplify the description or they represent 
anatomically relevant points, which may be on the axis of rotation of a joint or some other 
significant location.  Since we are interested in anatomical movement, we are interested in 
movements of articulated rigid bodies.  That means that there is a physical connection between 
the reference point and the moving mass, but the distance between the two need not be constant, 
especially if there is an intervening joint.  We are interested in situations when the direction of r  
changes with time, that is, where there is a rotation component. 

 

 

The ratio of the direction of the velocity to the direction of the radial vector 

An object with a mass of m  lies at a point that is at a location r  relative to a reference point, 
! , and it is moving with a velocity v .  We start by computing the unit vector and magnitude of 
each parameter. 

   

For any vector a, its magnitude is defined to be -
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r  is the magnitude and r =
r

r
 is the direction or unit vector of r .

v  is the magnitude and v =
v

v
 is the direction or unit vector of v .
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We may compute the ratio of the direction of the velocity to the direction of the radius, which 
is  !R .  It has a vector  !R  and an angle ! . 

  

!R =
v

r
; ! = " !R( ) ; !R =UV !R#$ %& .  

The directions r  and v  define a plane.  The vector of  !R ,  !R , is a perpendicular to that 
plane and !  is the angular excursion that turns r  into v . 

It is important for understanding what follows to differentiate between quaternions, which are 
written bolded and in italics, vectors, which are just bolded, and scalars, which are neither 
bolded nor in italics.  So,  !R  is the vector of the quaternion  !R  and !  is its angle, which is a 
scalar.  Of course, scalars and vectors are special instances of quaternions, but since they 
combine in different ways, it is convenient to differentiate them.  In addition, the practice of 
symbolically differentiating between the types of entities forces a more careful consideration of 
what is being said. Being forced to consider what form the elements of an expression take 
prevents many potential logical errors. 

Ratio of the velocity to the radial vector from the origin 

Note that the ratio quaternion may also be the unit quaternion of the ratio of the velocity to 
the radial displacement, R , which may be the simpler, more direct, way of calculating it.  

    

R =
v

r
= !

R
cos" + sin"#R( )

where !
R
=
v

r
, " = $ R , and  R =UV R%& '( =UV

v

r

%

&
)

'

(
* ,

thus !R = cos" + sin"#R .

 

The tangential and centrifugal components of the velocity 

From the unit vector,  !R , we can construct two rotation quaternions, one with an angle of 90° 
(
 
! 2  radians) and one with an angle of 0° (0 radians). 

   

!! = !R
"
2

#
$%

&
'(

 and !) = !R 0( ) .  

The rotation,  !! , gives the tangential component of the velocity and the rotation,  !! , gives 
the centrifugal component.  From an examination of the above illustration, one can easily write 
down the expressions for the two velocities. 

 

    

v! = v sin" !! # r  and v$ = v cos" !$ # r .

v! =R"=% 2
#r = V R&' () #r = *

R
sin"#R #r and 

v$ =R"=0
#r = S R&' () #r = *

R
cos"#r .

v = v$ + v! = *
R

cos"#r + *
R

sin"#R #r =R #r.
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Linear momenta 

If the mass of the object is m , then the tangential momentum of the object relative to the 
center of rotation is the mass times the tangential velocity and the centrifugal momentum is the 
mass times the centrifugal velocity.  The linear momentum is the mass times the velocity.  Note 
that the linear momentum is the sum of the tangential and centrifugal momenta.   

  

tangential momentum = p
!
=mv

!
=mV R"# $% &r ;

centrifugal momentum = p
'
=mv

'
=mS R"# $% &r ;

linear momentum = p =mv =m v
!
+ v

'( ) =mR &r .

 

Although the linear momentum is the product of a quaternion and a vector, the result is a 
vector, because the vector of the quaternion is perpendicular to the rotating vector.  
Consequently, the linear momentum is a non-orientable vector if the radial vector is a non-
orientable vector.  The radial vector is the difference between two locations, therefore is not 
intrinsically orientable.  Linear momentum has the same direction as its velocity and it is 
proportional to the mass and speed of the moving object.  We will find that angular momentum 
is a quaternion vector that does have an intrinsic orientation. 

A simple example 

This leads to a counter-intuitive, but observationally substantiated situation.  Assume that the 
mass is rotating on a circular trajectory about a reference point. 

Linear momentum is an expression of the effort that it would take to stop the movement, its 
inertia.  Inertia is proportional to the amount of material present and to the speed at which it is 
moving, therefore to momentum.  The tangential momentum is how much of that momentum is 
directed along a trajectory that is perpendicular to the radial vector from the point of reference 
to the moving mass.  The centrifugal momentum is the effort that would be required to keep the 
mass from moving radially.  If we were to instantaneously break the physical connection between 
the mass and the reference point, it would move away from the reference point with a 
momentum equal to the centrifugal momentum.  Note that the total linear momentum is a 
conserved quantity in systems that are not subject to external forces, but, neither of the 
component momenta are conserved and their values are functions of the location of the reference 
point. 

There are circumstances in which the component linear momenta may be informative.  If the 
reference point is on the axis of rotation for a bone, then the centrifugal momentum is an 
expression of how much the rotation tends to distract or compress the joint and the 
circumferential momentum is an expression of the energy of the rotation.  Time differentials of 
linear momenta are forces. 

 

dp

dt
= m

dv

dt
= ma = F .  

This implies Newton’s first law of mechanics.  If F  is zero, that is, there is no external force, 
then, there can be no change in momentum, meaning that the object must continue in the same 
direction at the same speed.  That includes the situation when the object is not moving (v = 0 ). 
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Let us consider a system in which a mass is rotating about a fixed reference point at a constant 
velocity.  Then the position of the point can be written as a function of time and its velocity 
readily computed, by taking the derivative of its location. 

   

r t( ) = ! i cos"t + jsin"t( )
v t( ) = ! #i sin"t + jcos"t( )  

It follows that rate of change of the velocity is directed in the opposite direction to the radial 
vector or the tether. 

   

F = m
dv

dt
= !"#

2
m i cos#t + jsin#t( )

= !"#
2
mr t( ) = ! constant $ r t( ) .

 

In a frictionless system, the mass will continue to spin indefinitely, unless the tether is cut, in 
which case, it will travel away from the central fixation, while continuing in the direction that it 
had at the instant of the disconnection.  In this case, the linear momentum, which is equal to the 
tangential momentum, changes periodically.  There is no external application of force, but the 
momentum is periodic.  There is a periodic internal application of force that moves the circling 
mass out of a straight trajectory. 

Angular momentum 

The angular momentum is the vector interval from the reference point to the point mass 
times the tangential momentum.  

  
angular momentum = µ =m rv

T
=m r !V R"# $% !r .  

Since the angular momentum is a product of vectors, it is a quaternion.  However, since the 
tangential velocity is by definition perpendicular to the radial vector, the quaternion is a vector, a 
quaternion vector, which means that it is orientable.  It not only has a direction and magnitude, 
but also a sense, that is, a direction of rotation about its axis.  Angular momentum, µ , is a 

quaternion vector, r  timesv
T

 times the mass of the moving particle, where r  and v
T

 may be 
quaternion vectors or standard non-orientable vectors. It is perpendicular to the plane defined by 
the radial and velocity vectors and turns r  to v

T
.  It is proportional to the mass of the particle, 

the distance from the origin to the mass particle, and the velocity of the particle. 

Angular momentum versus linear momentum and their conservation 

Angular momentum is a different type of entity than a linear momentum.  We can see that in 
the fact that a non-orientable vector may represent linear momentum and angular momentum 
requires an orientable vector.  Linear momentum is an expression of the inertia of an object.  It is 
the effort required to bring a moving mass to rest in the assumed frame of reference.  It expresses 
the amount of effort required and the direction in which it must be applied. The change in linear 
momentum that an object experiences is the effort that must be done to bring about the change.  
Angular momentum also embodies an effort, but it is the effort to rotate a body.  It is in essence 
the law of levers.  The longer the lever arm, the greater the mass, or the greater the velocity, the 
more effort it takes to stop the rotation.  When we use levers, we try to match two lever arms so 
that the impressed force is such that their angular momenta are equal.   
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The angular momentum vector is perpendicular to the plane in which the movement is 
occurring and its magnitude is proportional to the effort to the effort needed to stop the rotation.  
It also specifies the direction in which the effort must be exerted by its direction.  It is a vector 
that has direction, magnitude and sense.  That is to say it is orientable.  Linear momentum is 
expressed in kilogram-meters per second and angular momentum is expressed in kilogram-
meters squared per second. 

A reason that we care about both linear and angular momentum is that they are both 
conserved in a closed system.  If there are no external forces, then the velocities may be shifted 
between the components of the system, but the sums of both types of momentum over all of the 
components must remain the same magnitude and in the same direction.  If the connection 
between the circling mass and the center of rotation were cut instantaneously, the mass would 
continue indefinitely in the direction that it is going the moment of the cut.  That would satisfy 
both conservation laws because the velocity remains the same and the perpendicular to the 
velocity is constant, therefore the product of the radial vector and the velocity will be constant.   

The two conservation laws set constraints upon the possible outcomes of events in closed 
systems.  They also allow us to shift our point of view in useful ways that often clarify a situation 
or allow us to express the description of an event in different ways that are equivalent, but often 
give insight into the nature of the event.  We will spend most of the remainder of this essay 
considering such transformations. 

Angular momentum versus linear momentum and their conservation 

Angular momentum is a different type of entity than a linear momentum.  We can see that in 
the fact that a non-orientable vector may represent linear momentum and angular momentum 
requires an orientable vector.  Linear momentum is an expression of the inertia of an object.  It is 
the effort required to bring a moving mass to rest in the assumed frame of reference.  It expresses 
the amount of effort required and the direction in which it must be applied. The change in linear 
momentum that an object experiences is the effort that must be done to bring about the change.  
Angular momentum also embodies an effort, but it is the effort to rotate a body.  It is in essence 
the law of levers.  The longer the lever arm, the greater the mass, or the greater the velocity, the 
more effort it takes to stop the rotation.  When we use levers, we try to match two lever arms so 
that the impressed force is such that their angular momenta are equal.  The angular momentum 
vector is perpendicular to the plane in which the movement is occurring and its magnitude is 
proportional to the effort to the effort needed to stop the rotation.  It also specifies the direction 
in which the effort must be exerted by its direction.  It is a vector that has direction, magnitude 
and sense.  That is to say it is orientable.  Linear momentum is expressed in kilogram meters per 
second and angular momentum is expressed in kilogram meters squared per second. 

A reason that we care about both linear and angular momentum is that they are both 
conserved in a closed system.  If there are no external forces, then the velocities may be shifted 
between the components of the system, but the sums of both types of momentum over all of the 
components must remain the same magnitude.  If the connection between the circling mass and 
the center of rotation were cut instantaneously, the mass would continue indefinitely in the 
direction that it is going the moment of the cut.  That would satisfy both conservation laws 
because the velocity remains the same and the perpendicular to the velocity is constant, therefore 
the product of the radial vector and the velocity will be constant.   
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The two conservation laws set constraints upon the possible outcomes of events in closed 
systems.  They also allow us to shift our point of view in useful ways that often clarify a situation 
or allow us to express the description of an event in different ways that are equivalent, but often 
give insight into the nature of the event.  We will spend most of the remainder of this essay 
considering such transformations. 

A simple example 

Consider a simple example, where a mass is rotating along a circular trajectory about the 
reference point.  We can write the description of the trajectory as a function of time. 

   

r t( ) = ! i cos"t + jsin"t( )
v t( ) = ! #i sin"t + jcos"t( )  

From these relations we can readily compute the ratio of the velocity to the location. 

   

R =
v

r
=
!" #i sin"t + jcos"t( )
! i cos"t + jsin"t( )

= " #i sin"t + jcos"t( )$ # i cos"t # jsin"t( )
= "k sin

2
"t+cos

2
"t( ) = "k .

 

We can see that this is a correct expression for the ratio just by inspection.  It follows that the 
tangential velocity is 

 
v t( )  and the centrifugal velocity is 0.  The linear momentum is 

 
mv t( ) , 

which is also the tangential momentum.   

The angular momentum follows from its definition. 

   

µ =m rv
T
=m r !V R"# $% !r

=m& i cos't + jsin't( ) &' (i sin't + jcos't( )
=m&2'k cos

2 't + sin
2 't( ) =m&2'k .

 

The angular momentum is perpendicular to the plane of the location and velocity and it is 
proportional to the mass, the angular velocity, and the square of the distance from the reference 
point to the mass point.  Doubling the radial arm quadruples the angular momentum. 

The rates of change of linear and angular momentum 

It is an experimental observation that a force applied to a rigid body may be moved along its 
line of action l

v
( )without changing it rotatory action on the rigid body.  That means that there is 

a radial vector, d , that is perpendicular to the line of action for a velocity, unless the line of 
action passes through the origin of the radial vector.  Consequently, we can compute the ratio of 
v  to d , R , and the expression for the angular momentum becomes simpler. 

 

µ =md!R !d =md!
v

d
!d =mdv .  

That leaves us with the problem of finding d .  It lies in the plane of r and v  and it is rotated 
relative to r  by the negative of 

 
! 2  minus the angle between r  and v , ! . 
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! = " # $ 2 ," = %R   

 

 
Then, the radius is obtained by rotating r  through !  and taking the vector of the quaternion. 

  

d = cos ! "
#
2

$
%&

'
()
R "*( )+r = sin!R! +r ; R =

v

r
,! = ,R .

If R = cos! + - sin! ,  then R! = sin! " -cos! .

 

We can see that moving the force along its line of action will not change the moment about 
the point ! because the 

 
sin! is the scalar factor in both forms of the expression. 

  

d = sin!  r  and v
"

= sin! v , and

µ
d

= md v and µ
r

= m rv
"

, therefore

µ
d

= µ
r

.

 

 

 
 

In both cases we are effectively using a cross product and the magnitude of the cross product 
may be interpreted as the area of the parallelogram that has the two vectors as its sides.  In 
moving the force vector along its line of action we are effectively shifting a parallelogram that lies 
between two lines so that it is a rectangle.  The two cross products are represented in the above 
figure as oriented areas.  It is easily appreciated that the areas of the two cross products are the 
same.  The two oriented areas are in the same plane, so, the perpendiculars to the areas are in 
the same direction.  

The move to forces and torques 

If we return to our simple example, it is straightforward to compute the force that is acting on 
the mass to hold it in a circular orbit.  Force is the time derivative of the linear momentum.  We 
have computed the linear momentum and we assume that the mass is constant, so the derivative 
of the velocity is the critical parameter. 



 8 6/25/09 

   

p =mv =mR !r where 

r t( ) = " i cos#t + jsin#t( ) , v t( ) = "# $i sin#t + jcos#t( ) ,R = #k .

Therefore -

F =
d

dt
p =m

dv

dt
= $m"#

2 i cos#t + jsin#t( ) = $m"#
2 r .

 

The force is directed in the direction opposite the radial vector and it is proportional to the 
mass, the distance between the central reference point and the mass point, and the square of the 
angular velocity.  The force is entirely centripetal, that is pulling the mass towards the central 
reference point, and no force is required to move the mass along its circular course.   

If the trajectory of the mass is not circular, then there will be a tangential force.  We can see 
that because the ratio vector would have a scalar component since the angle between the radial 
vector and the velocity vector would not be a right angle (

 
! " ±# 2 ), therefore the ratio of the 

velocity to the radial vector would be a quaternion with both a vector part and a scalar part.  
The velocity will have components parallel and perpendicular to the radial vector. 

Another way to view the situation is to consider a force or collection of forces that act upon a 
rigid object.  Most placements of the force(s) will cause the object to rotate and translate to a new 
location. We must choose a reference point.  It may be a pivot point in a joint, a center of mass 
or an arbitrary point.  Its location is denoted by O.  The point of application of the force F is r 
from the reference point.  The force may be resolved into a force that is perpendicular to the 
radial vector in the plane defined by the radial and force vectors, the tangential force (F

T
), and a 

force that is in the direction of the radial vector, the centrifugal force (F
C

).  The force F
T

 will 

rotate the rigid body about O and the force F
C

 will draw the body in the direction of the radial 
vector.  We have effectively computed these vectors in the section dealing with the resolution of 
velocities. 

   

tangential force = F
T
=m

dv
T

dt
= V R

F
!" #$ %r ;

centrifugal force = F
C
=m

dv
C

dt
= S R

F
!" #$ %r ;

total force = F =m
dv

dt
= F

T
+F

C
=R

F
%r ,

where R
F
=
F

r
.

 

Torque Vectors and Torque Quaternions 

Torque is the rotatory effort being applied relative to a reference point in a rigid body. It 
resembles angular momentum in that it is a vector quantity that is proportional to the 
displacement from the reference point to the point of application of the force and to the 
magnitude of the force.  In vector analysis it is expressed as the cross-product of the radial 
displacement times the force.  It may also be expressed as the differential of the angular 
momentum. 
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! = r"F =mr"
dv

dt
;

! =
dµ

dt
=m

d r" v( )
dt

=m
# d $v( )

#t
.

 

 

Actually, those two definitions are not actually the same quantity if  r is a function of time.  
Therefore let us consider the definition of torque in some more detail.  We will start with some 
examples to get a feel for the way forces and torques behave. 

 

 

An example: uniform rotatory movement 

For uniform rotatory movement about a fixed point, we can write the expression for the 
radial vector as a function of time and the velocity and acceleration follow directly from that 
description. 

   

r t( ) = cos!t i + sin  !t j ,

v t( ) =
d r

dt
= "! sin!t i +!  cos  !t j ,

a t( ) =
d v

dt
= "!

2
cos!t i " !

2
sin  !t j = "!

2 r t( ) .

 

It follows that the ratio quaternion is the mass times the acceleration, divided by the radial 
vector. 

    

R
F
=
!m"

2
cos"t i + sin "t j( )

cos"t i + sin "t j
,

=m"
2

cos"t i + sin "t j( )# cos"t i + sin "t j( ) ,

= !m"
2

.

 

    
F = R

F
! r = "m#

2
r . 
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In this instance, the velocity is always perpendicular to the radial vector, so r = d  and we can 
write the expression for the angular momentum and differentiate it to obtain the torque. 

   
µ = mrv = m cos!t i + sin  !t j( ) "! sin!t i +!  cos  !t j( ) = m!k # $ =

dµ

dt
= 0 .  

The angular momentum is constant, therefore, the torque is zero.  It does not take any 
additional effort to keep the mass circling once it has been placed in orbit about the center of 
rotation. 

An example: non-uniform rotatory movement 

Now that we have set out the form of the analysis, let us consider a slightly more complex 
situation, where the movement is not circular or of uniform speed.  The locations lie on an 
elliptical trajectory that may move out of a plane.  It may rise and fall relative to the plane as one 
goes around the ellipse.  The location, velocity and acceleration are as follows. 

   

r t( ) = ! cos"t i +# sin  "t j + $ sin%t k ,

v t( ) =
d r

dt
= &!" sin"t i +#"  cos  "t j + $%  cos  %t k ,

a t( ) =
d v

dt
= &!"2

cos"t i & #"2
sin  "t j& $%2

  sin  %t k .

 

It follows that the ratio quaternion is the mass times the acceleration, divided by the radial 
vector. 

    

R
F

=
!m "#2

cos#t i + $#2
sin  #t j + %&2

  sin  &t k( )
" cos#t i +$ sin  #t j + % sin&t k

,

= m "#2
cos#t i + $#2

sin  #t j + %&2
  sin  &t k( )' " cos#t i +$ sin  #t j + % sin&t k( ) ,

= m ! "2#2
cos

2 #t+$2#2
sin

2#t+% 2&2
sin

2 &t( ) + #2 ! &2( )$% sin#t sin&t i + &2 ! #2( )"% cos#t sin&t j( ) .

If we multiply this ratio times the radial vector the result is the total force vector. 

    

F = R
F

* r ,

= !m "#2
cos#t $ % t( ) i + &#2

sin#t $ % t( ) j+ '(2
sin(t $ % t( ) k)* +, , where 

% t( ) = "2
cos

2 #t + &2
sin

2 #t + ' 2
sin

2 (t = r
2

.

F = !m "#2
cos#t $ r

2

i + &#2
sin#t $ r

2

j+ '(2
sin(t $ r

2

k)
*-

+
,.

.

 

If movement is entirely in a single plane and circular 
  
! = 0 ," = #( ) , then the force is the 

same as was computed for the uniform circular movement. 

   
F = !m" r

2

#
2
r = !m"

3
#

2
r . 

If the movement is in a single plane, but elliptical, then the total force is somewhat more 
complex.  It is a little counter-intuitive that despite the elliptical orbit, where the moving mass 
slows and speeds up at different parts of the orbit, the force that holds it on trajectory is a 
constant central force.  Of course that is true because planets in the solar system follow elliptical 
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orbits and they are held by a constant central force, namely the gravitational force between the 
mass of the sun and their mass. 

   
F = !m"2 r

2

# cos"t i + $ sin"t j( ) = !m"2 r
2

r .  

For both of these the force is directed in the opposite direction to the radial vector.  The 
situation for the full example is not as simple, but it is similar in that the force is in the same 
general direction.  If the angular velocity of the third component, ! , is the same as the angular 
velocity of the other directions, ! , then the force vector would be in the direction opposite to the 
radial vector.  The ratio of the direction of the force to the direction of the radius is given by the 
following expression. 

   

F

r
=mr2

! "2#2
cos#t( )

2

+ $2#2
sin#t( )

2

+ % 2& 2
sin&t( )

2( )
+ #2 ! &2( )$% sin#t sin&t i + &2 ! #2( )"% cos#t sin&t j

'

(

)
)
)

*

+

,
,
,

=mr2
! "2#2

cos#t( )
2

+ $2#2
sin#t( )

2

+ % 2& 2
sin&t( )

2( )
+% #2 ! &2( ) sin&t $ sin#t i ! " cos#t j( )

'

(

)
)
)

*

+

,
,
,

 

The relationship between the force vector and the radial vector is somewhat complex.  The 
vector that turns the radial vector into the force vector is always in the i,j-plane and it is 
perpendicular to the radius vector.  We know that the vector component is perpendicular to the 
radius because of exchanging of the sine and cosine functions in the vector.  This relationship is 
illustrated in the following figure.  The horizontal ellipse is the excursion of the radius vectors 
and the vertical ellipse is the excursion of its perpendicular.  In the ratio of the force to the radius, 

the ellipse is multiplied by a constant ( ! "2 # $2( ) ) and a variable function of time (
  
sin!t ), but 

that does not change the direction of the turning quaternion’s vector. It does affect the angular 
excursion of the radial vector necessary to align it with the force vector. 
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Calculation of the torques for the second example 

The torques are computed as follows for each case.  When the trajectory is circular, then the 
torque is zero, as was computed.   

When the trajectory is elliptical and confined to a single plane then the angular momentum is 
the product of the mass times the vector part of the product of the radial vector times the velocity 
vector. 

   

r = ! cos"t i + # sin"t j ,

v = $!" sin"t i + #" cos"t j ,

µ =m ! cos"t i + # sin"t j( ) $!" sin"t i + #" cos"t j( )
=m!#" k .

% =
d m!#" k( )

dt
= 0 .

 

As stated above for the central force that holds planets on their elliptical orbits, there is no 
torque for an elliptical orbit, because the angular momentum is a constant vector, even though 
the mass changes speed as it moves around its orbit. 

   

r t( ) = ! cos"t i +# sin"t j + $ sin%t k ,

v t( ) = &!" sin"t i +#"  cos"t j + $%  cos%t k ,

µ = m ! cos"t i +# sin"t j + $ sin%t k( ) &!" sin"t i +#"  cos"t j + $%  cos%t k( )
= #$ % cos%t sin"t & " cos"t sin%t( ) i + !$ % cos%t cos"t + " sin"t sin%t( ) j + !#" k .

' = #$ % cos%t cos"t & sin%t sin"t( ) & " cos"t cos%t & sin"t sin%t( )( ) i

+!$ % & sin%t cos"t - cos%t sin"t( ) + " cos"t sin%t+sin"t cos%t( )( ) j

= #$ % & "( ) cos%t cos"t & sin%t sin"t( ) i

&!$ % & "( ) sin%t cos"t+cos%t sin"t( ) j

= $ % & "( ) # cos % + "( )t i & ! sin % + "( )t j() *+ .

 

Clearly the torque moves in a circle in the plane of the elliptical movement, but it cycles at a 
rate that is the sum of the rates for the elliptical component and the oscillation above and below 
the plane.  This arrangement is too complicated to be readily visualized.  Fortunately, this 
complexity is not typical of anatomical movements.   

An example that is more representative of an anatomical movement is a pendulum.  Let us 
consider a periodic pendular movement as a third example. 

Pendular example 

Consider a joint in which the armature swings back and forth along a circular trajectory, but 
at a rate that varies sinusoidally.  In particular, the pendulum swings in the i,j – plane about the 
origin, with  lever arm of one unit.  It swings through a maximal angular excursion of !  with an 
angular velocity of  !t .  Consequently it swings from +!  to !"  and back in one unit of time.  
We can write down it temporal course fairly easily and all else follows from that decription. 
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r t( ) = cos ! sin " t( )( ) i + sin ! sin " t( )( ) j ,

v t( ) = #!" cos " t( ) sin ! sin " t( )( ) i + !" cos " t( )cos ! sin " t( )( ) j ,

µ =mrv =m cos ! sin " t( )( ) i + sin ! sin " t( )( ) j( ) #!" cos " t( ) sin ! sin " t( )( ) i + !" cos " t( )cos ! sin " t( )( ) j( )
=m!" cos " t( ) cos

2 ! sin " t( )( ) + sin
2 ! sin " t( )( )$

%
&
'k

=m!" cos " t( )k
( = #m!" sin " t( )k

 

The angular momentum is in-phase with the pendulum and the torque is shifted 90° out of 
phase.  The angular momentum is maximal at  t = 0  and 

 
! t=" , but in opposite directions.  It is 

minimal at 
 
t = ! 2  and 

 
t = 3! 2 , when it switches polarity.  The torque is proportional to the 

mass, the maximal excursion and the rate of the swinging and it points in a direction 
perpendicular to the plane of the pendular movement. 

Force couples 

As with velocity, a force can be moved along its line of action without fundamentally 
changing its effect on the rotation of the rigid body, therefore we can rewrite the expression for 
angular momentum. 

    
angular moment =M = rF

r
=r !V R

F
"# $% ! r .  

    

M = d!R
F
!d = d!

F

d
!d = d!F ,

where d = sin"R
F :#

! r ; R
F
=

F

r
; " = $R

F
; # = " % & 2 .

 

The radial component becomes shorter but the force becomes proportionately greater so the 
product is same.  The angular moment is the turning capacity of the force at its current point of 
application relative to the reference point.  We can make the concept more flexible by 
introducing the concept of a force couple.  If two equal, but opposite forces are applied at points 
separated by an interval d, then the moment of the force couple is the moment. 

 

 
M = d!F .  
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As discussed above, the moment is the product of two vectors, therefore a quaternion, but 
since the vectors are perpendicular, it is a vector, so it is a quaternion vector.   

Force couples are essentially equivalent to the laws of levers.  If we have a reference point, ! , 
then the force couple  is the turning effort upon a rigid body relative to the reference point.  
Three situations are illustrated in the following figure.  In each case the net angular momentum 
about the reference point !  is the same.  In the first situation, on the left, the forces are applied 
symmetrically to either side of the origin, so that is each is applied

  
d 2 way from the origin and 

both forces will tend to rotate the rigid body counterclockwise.  The resultant of the two forces is 
the sum of the two torques, 

  
T = d !F( ) 2 + d !F( ) 2 = d !F .  In the second situation, in the 

middle, one of the forces is applied to the origin, therefore does not produce any torque.  The 
other force is displaced  d  from the reference point so the torque is the same,  T = d !F .  In the 
third situation, both forces are applied to the same side of the reference point, therefore the rigid 
body would rotate about a different point if it were able to do so.  If the pivot point is at ! , then 
the two forces tend to move the rigid body in opposite directions.  However, the net effect is the 
same, 

  
T = 2d !F " d !F = d !F .  In addition to these types of variation, the force couple is 

unchanged if the distance between the points of force application is reduced or expanded as long 
as the magnitude of the force in concurrently raised or lowered by the same proportion. 

Force couples rotate the object but do not translate it.  Consequently, the moment of the force 
couple is the amount of turning capacity due to the force.  A useful feature of force couples is that 
their moments are free vectors, that is, vectors that do not have a particular location.  So we can 
move them as necessary as long as we keep the same moment.  The moment does define the 
plane and direction of the rotation, that is, the plane and sense of the quaternion vector. 
 

 

Equivalent systems of forces 

Since equal and opposite forces applied to the same point will have a net force of zero, we can 
apply the force F and its negative to the reference point without changing the mechanical 
situation for the rigid body.  That was done in panel B for the figure above.  However, we can 
rearrange our interpretation and consider the negative force vector as the other half of a force 
couple that has one force vector displaced d from the reference point.  The other force vector 
applied at O will now translate the rigid body in the direction of F but not rotate it. 

So, it is possible to replace a single force acting at a point on a rigid body with a force couple, 
which rotates the rigid body, and a force acting at the reference point, which translates the rigid 
body without rotating it.  The torque of the force couple and the translating force are always 
perpendicular for any single force. 
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The advantage of this arrangement becomes apparent when we wish to examine the 
consequences of applying several forces to different parts of the rigid body.  A torque/force pair 
can be generated for each force so that the torques all reference the same point in the body and 
all the forces pull from that point.  The forces and torques add vectorially with the others of the 
same type so that we obtain a force acting at the reference point and a torque for a force couple 
acting about that point.  However, unlike the case for individual forces, the force vector and the 
torque are generally not perpendicular when combining a number of forces acting at different 
points on the rigid body.  Still, we have reduced a set of forces to a single force and a torque. 

Forces are vectors and torques are quaternions.  Both may be added to others of the same 
kind, but they may not be added to each other.  The differences are subtle, but important.  A 
force can be represented by a right quaternion.  That is a quaternion that may be expressed as a 
ratio of two vectors at right angles to each other, but a force is indistinguishable from its 
reflection.  Torques are also right quaternions, the ratios of two vectors separated by an angular 
excursion of 

 
! 2 radians, but their sense of rotation is quite specific, so that the reflection of a 

torque is different from the original torque.  One is a right-handed rotation and the other is a 
left-handed rotation.  Still, both forces and torques add vectorially. 

If multiple forces act together at a point, then the net force is the vector sum of the 
component forces, which is a force.  This rule is well established by experimental observation. 

If we have two torques acting at the same point, then the net result is the vector sum of their 
two quaternions.  That is obviously true when they are acting about the same or opposite axes of 
rotation.  The total turning effort is the scalar sum of the magnitudes of the turning efforts about 
that axis of rotation.  It is less clear that when the two turning efforts are acting in different 
directions that the combined effort is about an axis between the two component axes.  Since an 
object can more in only one direction at any given time, there must be a single axis of rotation 
and it is not in the direction of either of the two components. 

 

 
 

The above figure is a demonstration that torques to add vectorially.  We have two torques, T
1
 

and T
2

, which are not aligned.  Since torque is a radial displacement times a force, we can 
express the torque as a force acting in the plane perpendicular to the torque vector times a force 
in that plane.  Each torque has its own plane and the two planes intersect in a line that is the 
ratio of the two planes.  Therefore, we can take our radial displacement to be a unit vector in the 
direction of the intersection and the force to be a force of appropriate magnitude in each plane.  
The result is two forces acting at a point and we can sum those forces to obtain an equivalent 
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force that acts in an intermediate direction.  This is just the run for adding forces.  But that 
combination force, acting at the radial displacement of the component torques, will generate a 
torque that is the vector sum of the component torques.  By this means, we can sum any two 
torques with a common reference point and by induction any set of torques acting at a common 
locus.  Consequently, torques sum vectorially. 
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It should be stressed that this argument depends on the two torques having a common 
reference point, on r  being a unit vector, and upon the force vectors being perpendicular to the 
unit radial displacement.  We have constructed an equivalent system that has nice properties.  
Torques do not add vectorially if the do not have a common reference point, but we can 
compute an equivalent system in which they do have a common reference point, therefore it is 
always possible to add torques. 

Computing torques at other locations, moving the point of reference 
 

 
 

When two torques are not referenced to the same point then we can move them to a common 
reference point.  The torques added are not those given, but their equivalents when referenced to 
the common locus.  If we know the value of a torque referenced to a point p

1
 and we wish to 

compute its value referenced to point p
2

, we subtract the torque referenced to p
1
 that would be 

obtained by applying the force at p
2

 from its torque referenced at p
1
.  That is illustrated in the 

above figure when we have a force F  applied at the point p
0

.  By definition the torque relative 
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to point p
2

 is V t !F"# $% , but we know the torque at p
1
 and the displacement from p

1
 to p

2
, 

which is s .   

  

T
p
2

= V t !F"# $% = V r + &( )!F"# $%

= V r !F"# $% + V & !F"# $%

= T
p
1

+ V & !F"# $% ,  where & = p
1
'p

2
.

 

More generally, if we have a number of forces that are applied to various points on a rigid 
body, then we can extend the above argument to the equivalent force and torque. 
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The final relationship says that if we know the equivalent force and torque at a point, we may 
compute the force and torque at another point that lie !"  from the reference point.  That is a 
remarkable simplification of the system. 

The force/torque pair of a combination of forces will generally not be mutually perpendicular 

If all the forces are applied at a single point, then there will be no torque, since they are all 
pulling radially. If all of the force vectors lie in a single plane, then they will all have torques in 
the same direction or its negative, which are both perpendicular to the plane that contains the 
force vectors.  Consequently, the force and torque are perpendicular and the pair can be reduced 
to single force in the plane, but displaced from the reference point (see the next section).   Finally, 
if all the applied forces are applied in a single direction or its negative, then they will all have 
their torques in the same plane, which is perpendicular to the directions of the force vectors.  
The sum of the torques will be in the same plane, therefore, it must be perpendicular to the sum 
of the force vectors.  Otherwise, the torque and force of a combination of forces applied to a rigid 
body will not be mutually perpendicular without very special balancing of their magnitudes to 
make it so.  

The next step would to be to try to convert the force/torque pair to a single force applied at 
some point on the rigid body.  To do that, we need one more tool, the consequences of moving 
the reference point. 

Reducing a force/force couple pair to a single force 

We start with a set of forces F
n

 applied at the points p
n

and referenced to the point! .  After 

processing as described above, we will have a mutually orthogonal force, F
!

, and force couple 
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torque, 
 
T

!
, at point !  that is formally equivalent to the set of applied forces.  We can compute 

the couple that would result if we shift the reference point to a different location displaced !  
from ! .  We did that above.  The linear force is not changed by displacement, therefore, it 
remains F

!
.  The torque is the torque at !  plus the torque from applying F

!
 at !"  from ! . 

  

F
!
= F

"
,

T
!
= T

"
+ ! #F

"

= r#F
"
+ ! #F

"

= r + !( )#F" .

 

 

 
 

It follows that if we choose the offset !"  so that !" #F
$
= T

$
= r#F

$
, then the 

force/torque pair is replaced by an arrangement where there is only a force and that force 
negates the action of the force/torque at ! .  That is, the force produces the same amount of 
torque as exists at ! .  The rotation about p

!
by the force F

!
 applied at p

!
 is equivalent to the 

sum of all the forces applied to the rigid body.  So the system of forces is reduced to a single 
equivalent force applied to a particular point on the rigid body. 

We still need to compute the value of ! . Clearly, the displacements are in the plane 
perpendicular to the torque’s vector.  Otherwise, the torque vectors that cancel cannot point in 
opposite directions.  Secondly, the displacement is most usefully chosen to be perpendicular to 
the force vector because then ! "F

#
= ! $F

#
.  That direction can be readily computed by 

computing the ratio of the plane of the torque to the plane of the force.  The ratio of those planes 
is their intersection.  We can determine the magnitude of the displacement, ! , by taking the 
ratio of the torque to the force vector. 

 

!" #F
$
= !" %F

$
= T

$
,

" = !
T
$

F
$

.
 

This is a remarkably simple result.  The system reduced to a single force that is equivalent to 
the force/torque pair is the system that displaces the force from the reference point by the 
negative of the ratio of the torque to the force.  Note that we still are referenced to a point. 
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There is nothing in this argument that depends upon the orthogonality of the torque and the 
force so we can extend it to the general case where the torque vector is not perpendicular to the 
force vector.  Then the displacement is chosen to lie in the plane that is perpendicular to the 
force vector and in the plane that is the perpendicular to the torque vector, which means that it 
lies in the intersection of the two planes and the ratio of two planes is their intersection.  So the 
displacement is the ratio of the two vectors. 

 
F
! !+"

# F
!

,T
!{ }

!
.  

The force F
!

 applied at ! + "  is formally and physically equivalent to the force/torque pair 

 
F
!

,T
!

{ }  applied at ! , when referenced to ! .  The reference to the origin of the system, ! , is 

critical to the interpretation of torque, which is always in reference to a location. 

Wrenches and their Pitches 

When a number of forces are applied to a rigid body at a number of points that are not 
coplanar, then the net result is almost always a force/force couple pair in which the force and 
torque vectors are not mutually orthogonal.  The object is moving linearly in one direction and 
rotating in a plane that is not perpendicular to that direction of movement.  When that occurs, it 
is not possible to reduce the system to a single force acting at a point.  There is an irreducible 
torque.  However, we can simplify the system to a force and a torque that is in the same 
direction.  Such a combined vector pair is called a wrench.  For an excellent introduction to this 
material in a vector analysis framework see Beer and Johnston (Beer and Johnston Jr 1990).   

We do not see a great deal about wrenches these days, but they were of great interest in the 
late 1800’s and early 1900’s.  They turn up in the advanced analysis of mechanical systems.  
They are related to screws, which are the movement version of the same process, a concurrent 
rotation about an axis of advancement.  We consider that type of movement elsewhere. 

Let us now consider how one obtains a wrench as a simplification of a system of forces acting 
on an object.  The mechanical situation is a rigid body that is being moved by multiple forces 
that do not act in a common direction or in a common plane.  We have shown that such a 
system may be simplified to a force, F , and a torque, T , acting at a reference point, ! .  As 
stated above, the force vector and the torque vector will not generally be mutually perpendicular.  
We have also seen that we can effectively eliminate a torque perpendicular to the force vector by 
moving the point of application of the force some distance along a vector that is perpendicular to 
both the force and torque vectors.  The applied force generates the same torque about the 
reference point.   

We cannot remove torque that is not perpendicular to the force vector by this means.  
However, we can split the torque into a component that is perpendicular to the force vector, T

!
, 

and a torque that is in the same direction, 
 
T
!
.  The torque that is perpendicular, T

!
, can be 

embedded in a displacement of the point of application of the force, F , leaving the torque in the 
direction of the force vector, 

 
T
!
. 

Let us start with the force, F , and the torque T .  We can compute the unit vector of the ratio 
of T  to F , ! .  Let the angle of the ratio be ! .  Then we can write the expressions for the 
components of T  as a function of the ratio of T  to F , ! , which is a quaternion. 
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A knowledge of the force and the components of the torque perpendicular to it allows one to 

compute the distance that one needs to go along !  to apply the force so as to generate the same 
torque. 
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The parallel torque can be moved with the force.  It is the turning effort in the plane of the 
force, that is in the plan perpendicular to the force. 

Although wrenches do not figure prominently in modern treatments of mechanics, they were 
well known in the late 1800’s (Joly 1905).  At that time it was common practice to speak of the 
pitch of the screw or the wrench.  As it happens the pitch of the wrench is the amount of turning 
in the plane perpendicular to the force vector (parallel torque) for a given amount of force.  If we 
express the pitch by the symbol p , then the scalar p  is the ratio of the magnitude of the torque 
parallel to the force to the magnitude of the force.  Since the torque and the force are in the same 
direction, their ratio is a scalar and that scalar is the pitch of the wrench. 
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This leads to an interesting relationship.  The ratio of the torque to the force for a system of 
forces acting on a rigid object is the sum of the offset or lever arm and the pitch, which is a 
quaternion. 

  

T

F
=
T
!

F
+
T
!

F
= p + " . 

Recapitulation and a More General Solution 

We started with a very general situation, where we had a rigid body that is being acted upon 
by a number of forces that are applied at various point on or within the object.  For instance, the 
object might be a bone that is being pulled on by a set of muscles attached at several insertions, 
plus the ligaments that bind the bone to another bone, the force of gravity acting at the center of 
mass for the bone, and the reaction forces in the joint that resist its compression or distraction.   

Forces add vectorially so one can compute a resultant force that may formally replace the 
various forces acting on the bone.  Torques also add vectorially.  Consequently, we can choose a 
reasonable reference point, such as a point on the axis of rotation for the joint, and compute the 
torque generated by each force in reference to that reference point.  While the torque for any 
force is always perpendicular to the plane defined by the force vector and the radial vector from 
the reference point to the point of application of the force, when we add the forces and the 
torques, the resultant force, 

 

F, and torque, 

 

T , will not generally be perpendicular. 
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We have seen that it is possible to resolve the torque into two components, one perpendicular 
to the resultant force vector (

 

T
!
) and one parallel to it (

 
T
!
).  Let those torque vectors be called 

the perpendicular torque and the parallel torque, respectively.  We can create an equivalent 
mechanical system with the torque being generated by the force (

 

F) displaced 

 

!  from the 
reference point.  It follows from the definition of torque that the torque is the radial displacement 
times the force vector in such a system, that is the lever arm times the force acting on the lever 
arm.  Therefore, the lever arm for rotation in the plane of the torque perpendicular to the force 
vector is the ratio of the perpendicular torque to the force. 

 

T
!
= " #F $ " =

T
!

F
. 

In this system, the force causes the rigid body to rotate in the plane that contains the force 
vector, F , and the displacement vector, ! , while being translated in the direction of the force 
vector.  

However, we still have a torque that is parallel to the resultant force vector, the twist that 
accompanies the translation, the wrench.  The wrench rotates the rigid body about the axis of 
the force vector as it translates the object.  The relative proportions of rotation and translation 
are expressed in the pitch of the wrench. 
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Let us consider how we might further generalize this analysis and perhaps simplify it in the 
process by replacing the force/torque pair with a single force.  To start, we resolve the torque 
into two components, as has already been done.  But, in addition, we consider the implications of 
the parallel torque.  As a consequence we will be able to move directly to an equivalent 
mechanical system that has a single force. 

The following figure illustrates the situation where the torque and force are not mutually 
orthogonal.  A force F  is combined with a torque T  that lies at an angle of !  to the force 

vector.  The torque is resolved into a perpendicular torque, T
!

, and a parallel torque, 
 
T
!
.  The 

perpendicular torque can be replaced with a displacement of the force vector !  from the 
reference point for the force torque pair.  Consequently, the displaced force has the same vector 
value as the original force, 

 
F
!
= F .  This is essentially the analysis that is spelled out above.  The 

new step is to note that a force vector at the same location may also replace the parallel torque.  
The new force vector is perpendicular to the plane defined by !  and 

 
T
!
 and its magnitude is to 

the magnitude of the parallel force as the magnitude of 
 
T
!
 is to the magnitude of T

!
. 
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The parallel torque force does not advance the object in the direction of the force vector, but 
it does rotate it in the plane perpendicular to the force vector.  We have two forces acting at a 
common point, therefore we can add them vectorially.  The result is the force F

T
.  However, it is 
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apparent that the force is simply the force in the plane of the torque that satisfies the relationship 
implicit in the definition of a torque. 
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We have taken advantage of the fact that  
!

!  is in fact a quaternion, although we have treated 
it as a vector up to this point.  It rotates the torque vector through 90° and re-scales it to the 
appropriate length.  This expression is in fact more general and simpler than the analysis that led 
to a wrench.  It moves directly from the force and torque to the radial displacement and force 
that will give the same mechanical outcome.  It is more general in that  

!

!  is not a unique value.  
We can redefine it as follows. 

   

!

! =
T

F
=
T

F
cos" + sin"#!( ) = $

T F
cos" + sin"#!( ) .

F
T
= V

!

!% 2

&1 #T'
(

)
* =
!

!% 2

&1 #T =
cos% 2 & sin% 2#!

$
T F

#T = &
! #T
$
T F

.

 

The product in the numerator rotates the torque vector through 90° in the direction opposite 
to the rotation from the force vector to the torque vector and the scalar in the denominator scales 
the force to be the inverse of the ratio of the magnitude of the tensor to the magnitude of the 
force, that is the inverse of the generalized pitch. 

An example of distributed forces that create a wrench 

Consider a set of four forces 
  
F
n

; n =1, 2, 3, 4{ } that are applied at 
  
± j, ± k{ }  where each 

force is perpendicular to the coordinate axis and tilted in the direction of  i .  The net effect of 
such an arrangement is a torque about the origin and a force in the direction of  i . 
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T
T
= j 0.1i + 0.2k( ) + k 0.1i ! 0.2 j( ) ! j 0.1i ! 0.2k( ) ! k 0.1i + 0.2 j( )
= 0.8i

F
T
= 0.1i + 0.2k( ) + 0.1i ! 0.2 j( ) + 0.1i ! 0.2k( ) + 0.1i + 0.2 j( )
= 0.4i

 

In the above illustration, the vectors are 0.2 units long in the  j,k -plane and one unit long in 
the direction of  i .  Consequently, the resultant force is 0.4 units in the direction of  i  and the 
resultant torque is 0.8 units, also in the direction of  i .  This arrangement is clearly a wrench in 
that the torque and force vectors are in the same direction.  Also, because of the symmetry of the 
arrangement it is clear that one can replace the wrench with a single vector at a unit distance 
from the origin that is directed 0.8 units tangent to a unit circle in the  j,k -plane and 0.4 units in 
the direction of  i , if the rotation is constrained to occur about the origin.  We are not really 
replacing the four vectors with a single force vector, but with a force couple where one of the 
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vectors is at the origin.  The simplification is not as intuitive as the wrench interpretation, which 
leads directly to a force pulling the object in the direction of the  i  axis while the object is being 
spun about that axis.  A point on the object will follow a screw trajectory. 

 

 
 

Joints generally resist substantial translations, because they are an inefficient way of achieving 
movement, therefore, the force component is apt to be the component that is resisted by 
compression or distraction of the structures of the joint.  Compression is absorbed by cartilage 
and distraction is usually absorbed by ligaments or muscles.  Rotation may also be resisted by 
joint structures, so that the joint is constrained to move in a particular plane. 
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