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Movements of a Circular Canal 

When a semicircular canal accelerates, the fluid within it tends to move in the opposite 
direction as it lags or leads the canal, because of inertial drag.  This section considers how fluid 
moves within a ring in a number of situations where the ring is rotating.  The general situation 
will be described first and then a number of sample situations or increasing complexity will be 
considered computationally.   

 

 
 

A general scheme for the analysis of fluid motion in a circular ring.  
The ring is rotated about an axis of rotation that does not lie in the sensory region 
and the inertial drag upon the fluid in the canal causes the fluid to move within 
the ring. 

The general situation is illustrated in the following figure.  There are two frames of reference, 
one attached to the center of rotation (R

f
) and one attached to a ring (C

f
).  The center of 

rotation has a location, !
R

, and an orientation frame of three vectors that reference it to the 

head or universal space or some other convenient coordinate system {x
R
,y

R
,z

R
}.  There is an 

axis of rotation for the canal, A
C

, which will be taken to be the perpendicular to the canal plane 
that leads to increased activity in the sensory epithelium when the canal is rotated about it.  It 
will generally be assumed that the movement is in a right-handed coordinate system.  The 
framed vector for the canal will have a location, !

C
, and a frame of reference, {x

C
,y

C
,z

C
}, 

where the first basis vector, x
C

, points to the direction of the optimal acceleration for the sensory 

epithelium, the second basis vector, y
C

, points in the direction of the axis of rotation and the 

third basis vector, z
C

, will point towards the sensor.  There is an extension vector from the 

center of the canal to the sensor, !
C

.  That extension vector is important to what follows, 
because we will select points in the canal by rotating the vector around the axis of the canal.  The 
radial vector, r

C
, extends from the center of rotation to the canal, where it meets a vector drawn 
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from the center of rotation to the same point in the canal, !
0
.  That point is rotated through a 

small angular excursion, !" , about the axis of rotation and it comes to a new point at the end of 

the vector !
1
.  The linear excursion of that point in the canal is !" .  The displacement may be 

resolved into three mutually orthogonal displacement vectors.  Since we are interested in the 
movement of fluid in the canal, the axes of the displacement are defined relative to the canal.  
One axis is perpendicular to the canal in the plane of the canal, !

P
, therefore it is in the 

direction of the radial vector to the point, r
C

.  A second is perpendicular to the canal in the 

direction of the axis of the canal, !
N

, therefore in the direction of the axis of the canal, A
C

.  The 

third, !
T

, is in the direction of the ratio of the first to the second and therefore it is in the 
direction of the tangent to the canal.  Although the basis vectors are listed in this order, they will 
be written in the order 

 
!
P

,!
T

,!
N{ } , so that 

 
!
P
"!

T
= !

N
, !

T
"!

N
= !

P
, !

N
"!

P
= !

T
.   In 

that order, they form a right-handed coordinate system.  Once we have these basis vectors, we 
can calculate the components of the displacement by taking the dot products of each basis vector 
with the displacement vector.  From that information one can move fairly directly to the forces 
acting on the fluid at the selected point in the canal.  The force is the second derivative of the 
displacement with respect to time.  It is in the opposite direction of the displacement and 
proportional to the rate of rotation.  We now need to get down to the nitty-gritty of the 
calculation. 

There are several rotations that occur about vectors, so let us set up the following convention.  
If a rotation occurs about a vectorA , let the quaternion that expresses that rotation be written as 

 
A = cos! + sin!"A . The italic and bold formal indicates that it is a quaternion and the bar 
indicates that it is a unit quaternion.  Similarly, the bar above the symbol for a  vector indicates 
that it is a unit vector.   

To simplify the calculations, let us assume that the center of rotation is at 
  

0 ,0 ,0{ }  and the 

basis vectors for the center of rotation frame are 
 

i, j,k{ } .  Doing so does not affect the 

generalizability of the calculations and it simplifies the symbolism.  Then the center of the ring is 
at !

C
 and the radius of the ring is r

C
.  The axis of the ring is A

C
.  If we take the center of the 

sensor to be at zero on the ring, then we can express the sampled point in the ring as a rotation 
of the extension vector from the center of rotation to the sensor, !

C
. 

  

p
C
= r

C
!"# $% +&C

,

= A
C

!
2

"

#
'

$

%
( ) *C )AC

+1
!
2

"

#
'

$

%
( +&C

,

= a
C
) *

C
)a

C

+1
+&

C
.

 

The vector from the center of rotation to the selected point is the point minus the center, 
which, because of the assumptions listed above, is the value of the selected point. 

  
!

0
p
C
"( )#$ %& = pC "( ) ' (R

= p
C
"( ) = p" .  
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 If the canal is rotated through a small angular excursion, ! , then the new locations of the 

point will be 
 
!

1
 and we can compute the change in location for the sampled point. 

  

p
!
= "

1
+#

R
,

= A
R

!

2

$

%
&

'

(
) *"0

*A+1

R

!

2

$

%
&

'

(
) +#

R
,

= a
R
*"

0
*a+1

R
+#

R
,

= a
R
*"

0
*a+1

R
.

 

The new location of the selected point is p
!

 and the displacement is the difference between 
the locations of the sampled point before and after the rotation. 

 
!" = p

#
$p

%
.  

The components of the displacement are the dot or scalar products of the displacement with 
the local basis vectors for the canal. 

  

!
P
=
r
C

r
C

; !
N
=
A
C

A
C

; !
T
=
!
P

!
N

.

"#
P
= "# !!

P( )!P = S "# $!
P

%& '(!P ,

"#
T
= "# !!

T( )!T = S "# $!
T

%& '(!T ,

"#
N
= "# !!

N( )!N = S "# $!
N

%& '(!N .

 

It should be noted that the rotation will also change the orientation and location of the canal, 
therefore one must recalculate the framed vector for the canal. 

   

C
f :! = aR "C f

"a#1

R
, a

R
= A

R

!
2

$
%&

'
()

*

+
C :! = aR " +

C
# +

R( )"a#1

R
= a

R
"+

C
"a#1

R
,

x
C :! = aR "xC "a

#1

R
,

y
C :! = aR "yC "a

#1

R
,

z
C :! = aR "zC "a

#1

R
,

,
C :! = aR " ,C "a

#1

R
.

 

However, returning to the component displacement vectors, the calculated quantity is a 
displacement and we are interested in acceleration.  We could compute the rate of change of the 
displacement per unit time and then compute the components or we can treat each component 
separately.  The result is the same if we stick to rotations about fixed centers of rotation.  Any of 
the vectors may be expressed as a vector in the plane of the change.  We parameterize the plane 
with two mutually orthogonal vectors, 

 
! ,"{ }  and express the displacement as a sum of the 

projections of !  on to !  and ! .  The velocity of the displacement is perpendicular to the 
displacement  and proportional to the magnitude of the angular excursion per unit time. Then 
one can differentiate again to obtain the acceleration and the result is that the acceleration is in 
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the opposite direction of the displacement and proportional to the square of the rate of angular 
displacement per unit time. 

  

v =
d!
dt

=
d

dt
m cos"t# + sin"t$( )%& '(

= "m ) sin"t# + cos"t$( )%& '( ,

a =
dv

dt
=
d

dt
"m ) sin"t# + cos"t$( )%& '(

= )"2
m cos"t# + sin"t$( )%& '( = )m"2! .

 

Forces that are in the directions of the perpendicular or the normal vectors will not affect the 
sensor, because they will not move fluid around the ring of the canal.  Therefore, we are most 
interested in the magnitudes of the forces that are tangential to the ring, which are proportional 
to !"

T
.  While we may eventually be interested in the actual magnitudes of the forces generated 

in the canal, for the time being we are only interested in relative magnitudes. 

At this point we will begin examining a number of progressively more complex situations to 
get some sense of the consequences of rotations on the signals generated by canals.  The first 
situation is very simple, if not very realistic in life.  It is assumed that the center of rotation is at 
the center or the circular canal and the axis of rotation is aligned with the axis of the canal.  The 
situation is very symmetrical so we can examine one segment of the ring and deduce the action 
occurring in all segments. 

F = ma 

If a mass moves at a constant velocity in a straight line, then no force is required for it 
continue in the same manner, leaving aside frictional forces for the time being.  However, if the 
mass accelerates or decelerates or if it moves in a curvilinear trajectory, then there must have 
been a force applied to cause the change and the mass will exert equal and opposite forces upon 
the agent responsible for the change.  The magnitude of the force will be proportional to the 
quantity of the mass and the acceleration that it experiences. 

A uniformly rotating circular ring with its axis of rotation through the center of the ring, aligned with the axis of the 
ring 

If we take the origin of our coordinates to be the center of the ring, where the axis of rotation 
intersects the plane of the ring, then the position of a segment of the ring may be described as a 
constant radius that rotates at a constant angular velocity in the plane of the ring.  For simplicity, 
let the radius be unity and the angular velocity be one cycle per second. 

   

p = r x cos! + y sin!( ) ,

r =1.0 , ! = 2"t .
 

The velocity vector of the moving segment is tangential to the ring and orthogonal to the 
position vector. 
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v =
dr

dt
x cos! + y sin!( ) + r "x sin!

d!
dt

+ y cos!
d!
dt

#
$%

&
'(

= r "x sin2)!+ y cos2)! *( )
= 2)r "x sin! + y cos!( ) .

 

A short time later the segment of the ring has rotated a small distance around the axis of 
rotation and the velocity vector is the same magnitude, but directed in a slightly different 
direction.  The change in the velocity with respect to time is the acceleration. 

   

a = 2!
dr

dt
"x sin# + y cos#( ) + r "x cos#

d#
dt

" y sin#
d#
dt

$
%&

'
()

*

+
,

-

.
/

= 2! r "x cos2!# " y sin2!#( )
= 4!2

r "x cos# " y sin#( )
= " 4!2

r x cos# + y sin#( ) .

 

Notice that the acceleration vector is the same as the position vector except for being 
multiplied by a negative constant.  Since the position vector is perpendicular to the ring in the 
plane of the ring, the acceleration vector is also perpendicular to the ring and in the plane of the 
ring.  This corresponds to our physical intuition that the uniformly spinning ring where the axis 
of rotation is through the center of rotation and perpendicular to the plane of the ring will 
experience a constant centrifugal force on the outer surface of the ring. 

An accelerating rotating circular ring with the axis of rotation through the center of the ring and aligned with the 
axis of the ring 

If the ring in our first example is changing the speed with which it is rotating, then the 
situation is slightly more complex.  The position vector is a variable function of time; therefore, 
the derivative with respect to time is not a constant. 

   

p = r x ! cos" + y ! sin"( ) ,

r =1.0 , " = f t( ) .
 

The velocity vector of the moving segment is tangential to the ring and orthogonal to the 
position vector. 

   

v =
dr

dt
x cos! + y sin!( ) + r "x sin!

d!
dt

+ y cos!
d!
dt

#
$%

&
'(

= r "x sin!
df

dt
+ y cos!

df

dt

#
$%

&
'(

= r "x sin! + y cos!( )
df

dt
.

 

The velocity is proportional to the derivative of the angular speed.  So far, the situation is only 
moderately different from that for uniform rotation of the ring.  The acceleration is notably 
different. 
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a =
dr

dt
!x sin" + y cos"( )

df

dt
+ r !x cos"

d"
dt

! y sin"
d"
dt

#
$%

&
'(

df

dt
+ r !x sin" + y cos"( )

d2 f

dt2

= r !x cos"
df

dt

#
$%

&
'(
! y sin"

df

dt

#
$%

&
'(

#

$%
&

'(
df

dt
+ r !x sin" + y cos"( )

d2 f

dt2

= r !x cos" ! y sin"( )
df

dt

#
$%

&
'(

2

+ !x sin" + y cos"( )
d2 f

dt2

)

*
+
+

,

-
.
.

,

= p
df

dt

#
$%

&
'(

2

+ t
d2 f

dt2
, t is equal to p rotated 90° .

 

In this situation, it is clear that the force can be resolved into two vectors.  The first, p , is like 
in the first example, with constant speed of rotation.  It is directed perpendicular to the ring, in 
the plane of the ring and it is proportional to the square of the angular velocity.  The second 
vector, t , is tangential to the ring, therefore is a force that would cause deflection of a partition 
transverse to the circumferential axis of the ring.  Consequently, a structure like the semicircular 
ducts might be sensitive to changes in head velocity, but not to uniform head rotation.  

If the displacement varies sinusoidally with time (  ! = c sin"t ), then the outward pressure is 
greatest when the velocity is greatest and the circumferential pressure is greatest when the 
displacement is greatest. 

   

a = p
df

dt

!
"#

$
%&

2

+ t
d2 f

dt2
= c' cos't( )

2

p (c'2 sin' t t  

 

 
 

We will move to a more realistic model, but first let us consider another situation, where the 
rotation is not about the perpendicular axis through the center of the ring.  Let the axis of 
rotation be in the plane of the canal and parallel with the sensitive axis of the sensor.  In this 
situation the distribution of pressures is not radially symmetrical, so we will need to look at the 
distribution of pressure as a function of angular distance from the sensor. 
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Let us put the situation in the format that was introduced above to set up for the more 
complex situations where the mathematics is more difficult.  We start with the ring in the i,k-
plane, centered on the origin, which is also the center of rotation.  The axis of rotation is in the 
same direction as the axis of the canal, both in the direction of the j axis.  The selected point is 
the extension vector of the frame of the canal that extends from the center of the canal to the 
sensor, !

C
, rotated through an angle of !  and it is denoted by p

!
.  The rotation of the canal 

about the axis of rotation is !  and it moves the selected point to p
!

.  The excursion of the 
selected point is !" . 

 

 
 

We can write down the expression for the various elements of the situation by inspection of 
the diagram.   The new location follows from the anatomical description of the rotation. Then it 
is a simple matter to compute the displacement of the selected point in the ring and derive an 
expression for the displacement that simplifies to a description in accord with our intuition about 
the situation. 

  

A
C
= cos! + j sin! .

p
C
= p! = AC

" #
C

= cos! + j sin!( )i = icos! $ k sin! .

A
R
= cos% + j sin% .

p% = aR "pC "a
$1

R

= cos
%
2
+ j sin

%
2

&
'(

)
*+
" icos! $ k sin!( )" cos

%
2
$ j sin

%
2

&
'(

)
*+

= icos ! + %( ) $ k sin ! + %( ) .
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!" = p# $p%

= icos % + #( ) $ k sin % + #( ) $ icos% + k sin%

= i cos % + #( ) $ cos%( ) $ k sin % + #( ) + sin%( )
= $ i sin% sin# $ cos% 1$ cos#( )( ) + k cos% sin# $ sin% 1$ cos#( )( )

= $ i sin% $ cos%
1$ cos#( )

sin#

&

'
(

)

*
+ + k cos% $ sin%

1$ cos#( )
sin#

&

'
(

)

*
+

= $ i sin% $ cos% tan
#
2

&
'(

)
*+
+ k cos% $ sin% tan

#
2

&
'(

)
*+

As # becomes very small, the second term in each component approachs zero.  Therefore -

!" = $ i sin% + k cos% .

 

 

The final result says that the displacement is approximately orthogonal to the radial vector, 
which means that the acceleration term is almost totally circumferential around the ring, 
independent of the point chosen.  This is the same result as we obtained by the first method. 

It should be noted that what is being assessed is the change in velocity of ring rotation.  If the 
ring continues to rotate at a constant velocity, then the fluid within it will be brought up to speed 
with the ring, because of friction within the fluid and between the fluid and the wall of the ring 
and because there is a partition across the ring that is somewhat distensible, but will not allow 
fluid to flow around the ring.  Consequently, the fluid displacement is really a change in fluid 
velocity and the ring is reacting to the acceleration of the fluid. 

Ring spinning about an axis through the ring 
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Let the center of rotation be the center of the ring and let it be perpendicular to the extension 
vector from the center of the ring to the sensor, !

C
.  Then the selected point in the ring is p

!
.  

For convenience, let the ring lie in the i,k-plane, so the quaternion of the rotation is A
R

 with a 

vector of k and the extension vector !
C

 is i.  The axis of the canal is 
 
A
C
= j .  We can then begin 

calculating the excursion of the selected point. 

  

A
C
= cos! + j sin! .

p! = AC " #C
= cos! + j sin!( )" i = icos! $ k sin! .

A
R
= cos% + k sin% .

p% = aR "p! "a
-1

R

= cos
%
2
+ k sin

%
2

&
'(

)
*+
" icos! $ k sin!( )" cos

%
2
$ k sin

%
2

&
'(

)
*+

= icos% cos! + j sin% cos! $ k sin! .
,- = p% $p!

= i cos% cos! $ cos!( ) + j sin% cos!

= icos! cos% $1( ) + j sin% cos! .

 

The movement is confined to the plane of the rotation.  However, the magnitude of ! is 
assumed to be small, approaching zero, therefore,  cos! is nearly one and the movement of the 
fluid in the canal is essentially perpendicular to the lateral wall of the canal.  The magnitude of 
the force is proportional to the 

 
cos! .  So, it is maximal in the mid-ring and small at the top and 

bottom of the ring.  It is in opposite directions on the two sides of the ring, as one would expect 
from the geometry of the situation.  There is no circumferential movement, therefore, this type of 
rotation would not stimulate the receptor. 

Rotation about an eccentric center of rotation, in the plane of the canal 

Next, consider the situation where the canal is rotating about a center of rotation that is 
outside the ring, but the axis of rotation is aligned with the axis of the canal.  We would expect 
this situation to be quite effective in stimulating the canal, but the forces should be a function of 
the point chosen in the ring. 
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Let the canal lie in the i,k-plane and the axis of the canal lie at the origin and directed along 
the j axis.  The extension vector from the center of the canal to the sensor, !

C
, is i.  The selected 

point in the ring is p
!

 and it is rotated about the center of rotation at !
R

to obtain the new 

location, p
!

.  The location of the center of rotation will be three radii from the center of the ring 
and the axis of rotation is parallel to the axis of the ring.  The difference in location due to the 
rotation is !" .  In this situation, it will be necessary to compute the ! vectors for the selected 
point so that !"  may be projected on the unit vectors of the !  basis, to obtain the relative 
amounts of acceleration along the canal and perpendicular to it.  

We can see by examining the illustration that the movement will tend to be at a substantial 
angle to the ring at both the top and the bottom of the ring and fairly parallel at the two sides of 
the ring especially at the sensor when the arrangement is it being most distant from the center of 
rotation.  We can also see that the circumferential accelerations in the part of the ring more 
proximal to the center of rotation will tend to push the fluid in the opposite direction to the 
direction induced in the more distal parts of the ring.  We would expect the more distal 
acceleration to be greater, because of the greater linear excursion with the same angular 
excursion. Having made these observations, let us consider the calculation of the displacements. 

  

A
C
= cos! + j sin! .

p! = AC " #C
= cos! + j sin!( )" i = icos! $ k sin! .

%
R
= $3i .

&
0
= p! $ %R

= i cos! + 3( ) $ k sin!

A
R
= cos' + j sin' .

p' = aR "&0
"a-1

R
$ %

C
$ %

R( )

= cos
'
2
+ j sin

'
2

(
)*

+
,-
" i cos! + 3( ) $ k sin!( )" cos

'
2
$ j sin

'
2

(
)*

+
,-
$ 3i

= i cos ! + '( ) + 3cos' $ 3( ) $ k sin ! + '( ) + 3 sin'( ) .
.& = p' $p!

= i cos ! + '( ) + 3cos' $ 3( ) $ k sin ! + '( ) $ 3 sin'( ) $ icos! + k sin!( )

= i cos ! + '( ) $ cos! + 3cos' $ 3( ) $ k sin ! + '( ) $ sin! + 3 sin'( ) .

 

This expression for the displacement of the selected point is sufficiently complex that one is 
probably far better off going with numerical methods.  First we calculate the displacement of the 
selected points as a function of their location on the ring.  The next figure shows the 
displacement in the direction of the iaxis and in the direction of the k  axis.  The rotation is 0.05 
radians which is slightly less than 2.9°.  We can see that the greatest displacements in the 
k direction, relative to the movement of the ring as a whole, are at the most distal and most 
proximal parts of the ring with respect to the center of rotation.  In the idirection the greatest 
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displacements are at the midpoints between those two poles and they are also about 0.05 times 
the radius.   

 

 
 

We know from the expression for the displacement that the functions are approximately a 
sine and cosine function, so it is likely that the circumferential displacement may be almost 
constant. There is a phase shift in the curve for displacement in the i  direction.  However, when 
the total displacement is plotted, we find that the amount of displacement is a cosine-like function 
of location.  It is maximal at the most distal part of the ring and minimal in the location closest to 
the center of rotation.  That is what we would expect from the structure of the situation.  Because 
the distal point is about twice as far from the center of rotation, it travels about twice as far with 
the same angular excursion. 

 

 
 

We can examine that by computing the projections of the displacement upon tangential and 
radial unit vectors.  That has been done here by taking the ratio of the displacement to the unit 
vector tangential to the ring and to a radial unit vector.  The tensor or magnitude of the ratio is 
the magnitude of the displacement, which is plotted immediately above.  The scalar of the ratio 
quaternions may be computed and they are the relative magnitudes of the projections of the 
displacement on each reference vector for that location.  The sum of the squares of the values for 
each location will be unity.  The relative radial flow is clearly warped from a sinusoidal function 
and the relative tangential flow is similarly warped, being narrower in the proximal part of the 
ring than in the distal part. 
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The curves for the angles between the displacement vector and the local reference vectors is 
approximately saw-tooth, but with some curvature that causes the curves to deviate from straight 
lines.  They are also phase-shifted relative to each other. 

 

 
 

When we multiply the relative amount of flow at each location by the absolute amount of 
flow, to obtain the actual amount of flow, then the curves become symmetrical nearly sine and 
cosine functions.  The radial flow is nearly sinusoidal and symmetrical for flow to the exterior of 
the canal on one side and flow towards the outside of the canal on the other side.  That is 
intuitively what we would expect from the geometry of the situation.  The circumferential flow is 
not symmetrical.  For the distal part of the ring the flow is greater than for the proximal part and 
the flow is in the opposite direction for the most proximal part of the ring.  In a ring of uniform 
caliber, there will be a preponderance of flow in one direction, the direction of flow in the distal 
part of the ring.  If one plots the function 

  
0.15cos! + 0.05  on the same plot, there is a very small 

discrepancy between it and the curve of the tangential flow, but it turns out to be very good 



 13 

approximation to the flow distribution.  That is good because it implies that we can assume a 
fairly simple relationship between angular excursion and net flow in a tube. 

 

 
 

In the next figure the profiles for a series of situations are plotted together to illustrate how the 
tangential and radial flows depend on the distance from the center of rotation to the center of the 
ring.  The number beside the curve indicates the distance between the centers, in ring radii.  The 
curves from the above calculations are indicated by the number 3.  All the curves of a type 
intersect at two points.  That value is the angular excursion of the ring rotation chosen for the 
calculation.  When the movement excursion is 0.05 radians, the tangential displacements have a 
common intersection 0.05 radians above the zero axis.  For the radial displacements, the 
intersects lie on the horizontal axis through zero displacement.  The curves are very close to 
cosine and sine waves so that there is a small asymmetry for tangential displacements, which 
means that there is a small bias for fluid movement in the ring in a direction opposite to the 
direction of ring rotation. 
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The geometry of the situation was chosen so that the sensor was at the part of the ring that is 
maximally stimulated by the rotation because the force to move the fluid in the direction 
opposite the rotation is greatest in the part of the ring opposite the center of rotation.  The 
calculations so far seem to indicate that the location of the sensor would effect the signal the 
sensor would give with a given rotation.  If we assume that the forces average, which is most 
likely since the fluid is virtually incompressible at the pressures that occur in a semicircular canal.  
Then the effect of a rotation would be to cause the fluid to move in one direction, the direction 
dictated by the pressures in the most distal part of the ring. 

The net pressure in the ring may be related to the integral of the forces generated throughout 
the ring, which is the area between the curve and the horizontal axis.  We have found that the 
pressure profile for circumferential movement is of the form 

 
! cos" + # , therefore the integral 

will be depend only on the offset, ! .  The k is a constant, which would be the sensor output 
when there is no movement.  In the vestibular system there is a baseline discharge rate about 
which the discharge rate varies, so both positive and negative displacements a will register. 

  
! cos" + #

0

2$

% d" = ! sin"
0

2$
+ #"

0

2$
+ k = 2#$ + k .  

The overall signal that is sensed by the ring is the angular excursion.  Theoretically, there 
would be more distortion if we use large angular excursions, but we can view a large angular 
excursion as a series of small excursions, each of which is quite small.  In that case there is little 
deviation from a sine or cosine function.  

If the movement is happening at a particular speed, then the angular excursion per unit time 
will be translated into a displacement per unit time or an angular velocity.  It is the change in 
velocity that generates forces that tend to displace the fluid.  If a ring travels in a straight line with 
constant speed, the fluid in the ring travels with the ring and there is no force.  If the speed of the 
ring changes or the direction of its movement changes, then there is a change in velocity and the 
fluid has an inertial drag, which generates reaction forces of fluid movement. Therefore, the 
pressure on the cupula will be a linear function of the change in the head’s angular velocity. 

The average circumferential displacement is a linear function of the magnitude of the 
rotational excursion if the ring is rotating about an axis that is parallel with the axis of the ring.  
That is remarkable, because it says that the push on the cupular partition is simply related to the 
head movement, independent of the center of rotation.  Even though the semicircular canals 
move through much more distance when the head is moved from the waist than from the neck, 
the canals will sense both movements as being the same if the angular excursion is the same and 
the time to complete the movement is the same.  The local forces at points in the ring will be 
much greater in the first situation, moving from the waist, but the average force moving fluid 
around the ring is the same. 

Rotations about the axes of rotation near the axis of the ring 

The next few section it will be shown that rotations in planes perpendicular to the plane of the 
ring cause no overall circumferential fluid movement, because the average displacement around 
the ring is zero.  So, circumferential movement in a ring is due to rotation in a plane near that of 
the ring.  We will briefly consider that relationship in the next couple sections. 

Now, we turn to rotations about axes that are tilted with respect to the axis of the ring.  In the 
following figure, the center of rotation is displaced three ring radii in the direction of the jaxis 
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and three radii in the direction of the iaxis.  The axis of rotation is initially parallel to the axis of 
the ring (0°).  Then the direction of the axis of rotation is moved in five steps to point in the 
direction of the center of the ring.  In the most tilted instance, the ring is tilted 45° with respect to 
the axis of rotation (45°). 

 

 
A ring (green) is rotated about an eccentric center of rotation (brown circle) with a 
number of different axes of rotation ranging from perpendicular to the plane of the ring 
(0°) to a 45° angle to the plane of the ring. 

 

 
 

When the axis of rotation is parallel to the axis of the ring all of the displacement is 
circumferential and the average is proportional to the angular excursion of the rotation, but the 
displacement varies sinusoidally around the ring.  When the axis of rotation is a 45° angle to the 
ring, but through the ring the circumferential displacement is constant around the ring, but there 
is a substantial displacement towards the wall of the ring that varies sinusoidally with location, 
being greatest at the poles of the ring, the leading a trailing parts of the ring.  Note that since the 
lateral and radial displacements co-vary, the displacement is neither radial nor lateral, but 
oblique, more radial than lateral. 

It is also interesting that the tangential displacement curves do not cross at a common point.  
That reflects that the middle value of the curves shifts with angle.  When the axis of rotation is 
perpendicular to the ring, the middle value is the magnitude of the angular excursion of the 
rotation and when it is a 45° angle, it appears to be about the angular excursion times the cosine 
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of 45°.  Consequently, the average displacement in a rotating ring is an index of both the angular 
excursion and of the inclination of the ring to the axis of rotation. 

Rotations in which the ring is tilted to the axis of rotation, but there is some rotation in the plane of the ring. 

The previous situation was complicated by two things happening at once.  The axis of 
rotation was moving closer to the center of the ring at the same time as it was changing it angle 
with respect to the plane of the ring.  Let us now eliminate the first  factor by examining the 
situation where all the axes of rotation are through the center of the ring, but they differ with 
respect to their tilt.  When the ring is perpendicular to the axis of rotation and the axis of rotation 
in through the center of the ring, we have the initial situation considered above and all of the 
displacement is circumferential.  The tangential displacement is 0.05 radians, the same as the 
total displacement of the ring about its center.  The displacement is the same in all parts of the 
ring so the curve is a straight line or a constant value.  As the axis is tilted more with respect to 
the plane of the canal (10° through 90°), the amount of tangential displacement  becomes less 
until there is no tangential displacement of average (90°), because the ring is rotating about an 
axis through the center of the ring that lies in the plane of the ring.  It is spinning like a coin 
spinning on it edge.  There is some sinusoidal variation in the profiles for tilted axes of rotation, 
because some parts of the ring are further from the axis of rotation than other parts.  The 
magnitude of that variation increases with greater tilt. 

 

 
 

Still, the variation is much smaller than the mean value for all but the 90° tilt example.  For 
every other example, there is a non-zero average for the profile and the area between the profile 
and the zero axis is greater for less tilt.  It works out that the magnitude of the average tangential 
displacement is proportional to the cosine of the angle of the tilt.  So we can elaborate on the 
expression developed from the first situation and say that the response, ! , is proportional to the 
rate of change of rotation, angular acceleration, ! , and the cosine of the tilt between the axis of 
the canal and the axis of rotation, ! . 
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That relationship indicates that we cannot tell from one sample of a response to a movement 
to what extent the ring is accelerating (! ) and to what extent it is tilted relative to the axis of 
rotation ( ! ). 

Returning to the previous section, we can now say that the curves for tangential displacement 
did not cross at a single point because the average values of the responses were different in 
response to the different tilts with respect to the plane of the ring. 

Rotations in which the ring moves in direction of its axis 

More briefly, we can consider the displacements that occur when the ring moves about an 
axis that lies outside the ring in the plane of the ring and the ring moves in the direction of the 
axis of the canal.  It moves face-on.  We would expect the main displacement to be against the 
lateral wall of the canal.  The next figure illustrates the displacements relative to the local 
coordinate system, that is radially, tangentially and laterally or orthogonal to the ring plane.  The 
calculations were essentially as in the last situation, except that the center of rotation is displaced 
along the k  axis for 1, 3, 5, 7, 9, and 11 radii, and the rotation is about an axis of rotation 
parallel to the i  axis. 

 

 
As expected, the major displacement is in a direction orthogonal to the canal plane or against 

the lateral wall of the ring.  The amount of displacement is proportional to the distance from the 
center of rotation to the center of the ring.  The sinusoidal variation is due to the more proximal 
locations traveling less distance than the more distal locations. 

There is also some displacement in the radial direction at the more distal and proximal 
locations.  That is centripetal displacement due to movement in a circle, so that the fluid seems to 
be drawn towards the center of rotation because of it deviation from a straight trajectory. 

There is also some tangential displacement, for the same reason as the radial displacements, 
but it is greatest at the middle of the ring, where the fluid tends to flow along the tube towards 
the distal part of the ring.  The displacement is balanced on the two sides, or opposite in 
direction, so there is no net movement when integrated over the whole ring. 

Both the radial and the tangential displacements are sinusoidal about no displacement, so that 
there is no net tangential displacement, but there would be a force on the outer wall of the distal 
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ring and the inner wall of the proximal ring, which would tend to push the ring distally as one 
would expect of a swinging ring. 

Spinning about an axis in the plane of the ring 

Another possible way of rotating the ring is to spin it about and axis that passes through the 
middle of the ring in the plane of the ring.  It would be spinning like a top or a penny spinning 
on its edge.  The displacements would be fairly straightforward.  They would be against the 
lateral walls of the ring, in opposite directions on the two sides of the axis of rotation and zero 
where the axis passes through the ring.  There would also be a radial displacement towards the 
center of the ring because the fluid would deviate from a straight trajectory.  Calculations with 
the model indicate that the lateral displacements are orders of magnitude greater than the radial 
displacement for small angular excursions.  There would be no tangential displacement, because 
the fluid at any location will be moving in a circular trajectory in a plane perpendicular to the 
plane of the ring. 

Conical swings about an axis parallel to the plane of the ring 

A more interesting excursion is when the ring is swinging about an axis that is not through the 
ring, but parallel to the plane of the ring, that is experiencing a conical rotation.  Many of the 
movements of the head will produce such a trajectory for the semicircular canals.  For instance, 
moving one’s head back and forth in a horizontal plane, as when shaking it to signify ‘no’ or 
disagreement would cause all of the canals to experience a conical rotation.  In that particular 
instance, the only canal that has a plane that comes close to containing a vertical vector is the 
anterior canal.  The posterior canal is in roughly the same situation.  The horizontal canal would 
roughly approximate another type of conical swing where the center of rotation is not in the 
plane of the canal, but the axis of rotation is in the direction of the axis of the canal, that is 
formally equivalent to the first situation considered, because we can find a point on the axis of 
rotation that is in the plane of the canal.  

In the next section, we will consider the special case of the axis of rotation parallel to the ring 
plane, but not in it, and then move on to the general case of a conical rotation.  That is the 
situation most like normal movements of semicircular canals. 

What happens when the tube is not of uniform caliber? 

The assumption of a tube of uniform caliber has given us some insights into the movements of 
fluid in a ring, it is not very like the anatomy of semicircular canals.  The semicircular canals are 
only partial rings, about two-thirds of a circle with the ampulla at one end.  Both ends of the 
canal are joined to the utricle, which is a comparatively large amorphous chamber.  The 
diameter of the duct part of a canal is about a quarter to a third that of that of the ampulla and 
the ampulla is much smaller than the utricle. We would expect comparatively little resistance to 
fluid flow in the utricle or the ampulla, compared to the resistance to flow in the duct.  For 
laminar fluid flow in a circular tube, resistance is proportional to the fourth power of the radius 
of the tube, which means that the resistance to fluid flow in the duct is about two orders of 
magnitude greater than the resistance in the ampulla and even greater relative to the utricle.  
These structural considerations mean the fluid dynamics in the vicinity of an ampulla are like 
that of a hypodermic syringe with a long needle on it.  The pressure needed to move the plunger 
in the barrel is much greater with the needle attached than it is without it.  In much the same 
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way, a force that tries to move fluid from an ampulla into the adjacent duct will meet a 
substantial resistance to flow that depends upon the viscosity of the fluid, the length of the tube, 
and the diameter of the tube.   

  

Hagen-Poiseulle Formula for laminar flow in a circular tube of length !  and diameter d .

"# =
128µ!Q
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µ is proportionality constant between stress, %, and strain, 
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dt
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Q =
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'
 is the volumetric flow rate (volume times velocity) and # is the pressure.

 

The duct acts as a damper on the system.  The same process would work in the opposite 
direction.  Fluid movement from the duct through the ampulla and into the utricle would 
encounter a drag retarding movement through the duct.  The retarding force would be 
proportional to the velocity of fluid movement and opposite the direction of the force trying to 
move the fluid through the ampulla.  This damping is a good feature to have in such a system 
because it tends to prevent large movements of the fluid in the canal.  The ampulla is sealed off 
by the cupula and the cupula is distensible, but optimally only within narrow range.  Too much 
unopposed force tending to move fluid around the canal would tear the cupula from its 
attachments to the wall of the ampulla and the crista ampullae.  The cupula will act as a spring in 
that fluid movements will cause it to billow, like a sail in the wind.  However, that distortion will 
resist further distortion, presumably in a manner roughly proportional to the amount of 
displacement, F

C
= !Q .   Ideally, we want a brief transient delay as the canal changes the rate at 

which it rotates and a rapid acceleration of the fluid within the canal to the new velocity. 
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" =  angular displacement about center of rotation.

$ =  angle between the axis vectors.

 

There is an additional component acting to control fluid movements.  The duct of a 
semicircular canal does not have a circular cross-section.  It is elliptical, with an approximately 
2:1 ratio of axes.  That means that it can accommodate a bit more fluid if there is greater internal 
pressure and it can become flatter if the internal pressure drops.  That may be an important 
mechanism if the movements of fluid into and out of the ampulla. As fluid is forced into the 
ampulla by greater pressure on the utricular side of the cupula, the cupula billows, thereby 
forcing fluid from the duct side of the ampulla into the duct.  The duct offers resistance to fluid 
movement, but the fluid can be accommodated by rounding of the duct.  If there is a sustained 
acceleration, then the duct can bleed the excess fluid through the duct and into the utricle.  With 
fluid movements in the opposite direction, the duct side of the ampulla can draw fluid from the 
duct by allowing the duct to flatten a bit.  This mechanism would also seem to work as a spring 
and, in the short term, one would expect the fluid stored in the duct distortion to be proportional 
to the amount of fluid that has moved into or out of the duct.  More stored fluid would stretch 
the duct more and create a greater restoring force, F

V
= ±!

D
Q"

T
. 
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In fact, the anatomy is even stranger in that the needle extends back to end in the chamber of 
the syringe. 


