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Snakes, Swan’s Necks, and Puppy Dog Tails 

It has been noted in passing that seven cervical vertebrae in mammalian necks seems to be a 

threshold of sorts for movements (refs).  If you add an additional link, the movements take on a 

looser quality that does not  seem quite ‘neck-like” and stiffening one linkage, as might happen 

with a fusion or arthritic restrictions, leads to a substantial reduction in movement.  One might 

speculate that the number of vertebrae and the amount of movement in the intervertebral 

linkages might be in some way set by evolution to achieve the needs of a mammalian neck (ref).  

With a very small number of exceptions (manatees, and two types of sloth), all mammals have 7 

cervical vertebrae.   

 

A snake’s skeleton has a series of nearly identical elements composed or a vertebra 
and two attached ribs.  The concatenation of many small movements between 
successive vertebrae allows the snake to take a wide variety of sinuous shapes. 

That leads to curiosity about the implications of chains of many similar linkages, such as 

occur in a cat’s tail, a snake’s body, or a swan’s neck.  A swan’s neck may have up to 25 cervical 
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vertebrae.  Some of the aquatic reptiles of the Mesozoic, plesiosaurs, had up to 40 cervical 

vertebrae.  The cat’s tail may have 21-23 caudal vertebrae.  Snakes have largely identical series 

of vertebral segments, with attached ribs.  All of these anatomical structures have a great deal of 

mobility and a similar manner of moving. 

In this chapter, we will consider the dynamics of a mechanical system that has a high degree 

of repetition of concatenated identical elements.  While we start with the idea of a snake or a 

swan’s neck, we will be concerned with an abstract entity that we will call an artificial snake.  

The results may not be directly applicable to actual snakes or swans necks or puppy dog tails, 

because a close examination will reveal that the elements in those structures are not in fact 

identical.  Snake spines come closest.  Bird necks are most differentiated. 

Artificial Snakes 

We will talk about joints and muscles and how muscles move bones at joints.  While we start 

with the concepts of actual joints and muscles, we will again recast those entities into abstractions 

and consider the formal properties of groups of muscles and joints working in concert. 

 

An artificial snake is created by linking a series of identical elements that can move 
about a central pivot point.  This mechanism can be described abstractly by set of 
linked framed vectors. 
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We will start with a very simple toy.  A toy snake is constructed by concatenating a number of 

identical elements [E
1
, E

2
, E

3
,…,E

n
].  Each has a pivot point, which is taken to be the location 

[P] of the element.  In the illustrated instance all the pivot points have an axis of rotation [p] that 

is directed perpendicular to the reference plane [p = r] and the pivot points are linked to each 

other in directions that extend parallel to the reference plane.  The linkage [L] is an extension of 

the element to the next pivot point and it defines a direction relative to the element [s].  The 

direction of the link and the direction of the pivot axis define an orientation frame [O].  We will 

assume that the mutually perpendicular direction that your thumb points when the fingers of 

your right hand curl from the pivot axis to the linkage direction will the final axis of the 

orientation frame [t]. 

 

The frame vectors of a single element 

In addition, we will have two armatures that extend away from the pivot point in the plane of 

the pivot axis, that is, parallel with the reference plane.  The two armatures [A
1
, A

2
] will extend 

symmetrically to either side of the linkage so as to form a right angle between them.  Their 

directions will be a
1
 and a

2
.   Their length will be ‘! ’.  Therefore, each element of the snake 

may be written as a framed vector. 
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The abstract toy snake is expressed by a series of linked elements composed of a 
pivot point at a particular location and two extended vectors that arise from the 
pivot point and extend symmetrically to either side of the axis of the element.  The 
element is orientable.  Each element can be described by a framed vector.  

The rotation between elements is given by the quaternion 
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We can write down the expression for the snake from these expressions. 
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We can place it in space by specifying the location and orientation of the first element. 
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Since the axis of the pivot joint is fixed relative to the element and it is aligned with the r axis, 

the calculation is very straight-forward.  We can also use the full angle form of quaternion 

multiplication to compute the new values of the frame elements. 
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The pivot axis is allowed to take any direction relative to the element.  Since the 
pivot axis is no longer perpendicular to the plane of the element, the r vector of 
the frame may be defined as the direction of the ratio of two of the extension 
vectors. 

Having carried the analysis to this point in an essentially two-dimensional situation, it is easy 

to write down the description for an arbitrary snake in three dimensions.  The main difference is 

that the pivot axis can take on any direction, therefore, we need to use the half angle expression 

for rotation. 
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More generally, create a real or hypothetical vertical or lateral extension that is moved with the 

element. 

The extension elements may be written as functions of the orientation frame of reference.  

Then, we need only keep track or the locations and orientations. 


