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An Intuitive Logical Formalism for the  
Description of Anatomical Movements 

We need a logical formalism for describing the anatomy of a structure in a way that 
leads naturally to the description of its movements.  Quaternions and framed vectors 
provide an intuitive language for describing structure and movement.  In order to see 
how they operate, it is necessary to examine a few attributes of quaternions. 

One might begin with a bit of history.  Complex numbers were well known in the 
1800’s and they were the focus of a great deal of the more advanced mathematics and 
physics of the time.  An Irish mathematician, one of the great mathematicians of all time, 
Sir William Rowan Hamilton wondered if it might be possible to generalize the complex 
number, which are intrinsically two dimensional, to a form for three dimensions 
(Hamilton and Joly 1869; Joly 1905; Graves 1975; Stewart 2007).  In particular, it was 
common practice to use complex numbers to represent rotations or periodic variations 
and he wondered if number like a complex number could represent rotations in three 
dimensions.  It turns out that there are such numbers, but they are different in many 
ways, different enough that it took him about many years to see how to do it. 

Complex Numbers 

Consider complex numbers first.  A complex number is the sum of a real number and 
an imaginary number.  Real numbers are the number that we use every day to measure 
things.  They are the decimal numbers.  An imaginary number is a real number times the 
square root of -1, which is generally written as i.  If  ‘a’ and ‘b’ are real numbers, then the 
combination 

� 

a + bi is a complex number.   

Complex numbers may be interpreted as vectors in a plane.  Two axes, the real 
number axis, which is usually horizontal, and the imaginary number axis, which is 
perpendicular to the real number axis, define the plane.   
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Note that one might also represent the complex number as a radius of a circle 
centered upon the origin.  If the magnitude of the complex number is the length of the 
vector used to represent it, 

� 

! , then its magnitude is the square root of the sum of the 
squares of its components. 

� 

! = a
2

+ b
2  

The direction of the vector is 

� 

! , the angle between the positive real axis and the vector.  
It follows that the complex number can be represented by the expression -. 

� 

c = a + bi = ! cos"+ isin"( )  

Addition of complex numbers is like the addition of vectors, in that one adds the real 
terms together and adds the imaginary numbers together and the sum of those two sums 
is the complex number that is the sum of the component complex numbers. 

� 

a + bi[ ] + c + di[ ] = a + c( ) + b + d( )i[ ]  

The elegance of complex numbers lies in the manner in which they multiply.  
Multiplication is basically algebraic, remembering that 

� 

i
2

= !1.  However, in the 
trigonometric notation, that works out to mean that the product of two complex numbers 
has a length that is the product of their individual lengths and an angle that is the sum of 
their angles.  If one of the complex numbers has a length of 1.0, then it effectively rotates 
the other complex number through an angular excursion equal to its angle. 

� 

a + bi[ ]! c + di[ ] = ac + bc + ad( )i + bdi
2

= ac - bd( ) + bc + ad( )i ,

= "
1
cos#1 + isin#1( )! "2 cos#2 + isin#2( ) = "

1
! "

2
cos #1 + #2( ) + isin #1 + #2( )[ ] .

 

The upshot of these properties of complex numbers is that a unitary complex number, 
one with a magnitude of 1.0, acts as a rotation operator for transforming other complex 
numbers by rotating them about the origin.  That property is used extensively in physics, 
where the operator is often expressed in exponential form. 

� 

e
i!

= cos!+ isin! . 

These points are developed in more detail elsewhere (Langer 2005b; Langer 2005c; 
Langer 2005e) and in many standard mathematics texts. 

Quaternions 

[A summary of the formal structure of quaternions and the operations that may be 
performed with them is given in a later chapter.  There are a number of other 
introductions to the formalism of quaternion analysis. (Hamilton and Joly 1869; Hardy 
1881; Tait 1886; Joly 1905; Langer 2005b; Langer 2005c; Langer 2005d; Langer 2005e; 
Langer 2005f).  In this chapter they will be introduced in a more heuristic fashion.] 

One might reasonably assume that if two components suffice to express rotations in 
two dimensions, then it would take three to express rotations in three dimensions.  In fact, 
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it takes four.  In addition, there are some other peculiarities of three-dimensional 
rotations that lead to unexpected attributes for the formal system that describes them. 

Hamilton found that it took a real number and three different imaginary numbers (i, 
j, k) to characterize rotations in three dimensions. 

� 

q = a + bi + cj+ dk . 

If we express the quaternion as a vector, then the i, j, and k unit vectors are directed 
in three mutually orthogonal directions and the vector of the quaternion is the sum of the 
last three components.  The first component is a scalar.  The coefficients (a, b, c, d)  are 
all real numbers.  The magnitude of the quaternion is the square root of the sum of the 
squares of its four components.  The magnitude of the vector of the quaternion is the 
square root of the sum of the squares of the vector components.  The magnitude of a 
quaternion is called its tensor, T. 

� 

 If q = a + bi + cj+ dk,  then the vector of the quaternion is 

v = bi + cj+ dk and the scalar of the quaternion is 'a'.

T q( ) = a2
+ b2

+ c2
+ d2  and T v( ) = b2

+ c2
+ d2 .

 

We can rewrite the expression for the quaternion as its magnitude times a 
trigonometric expression that contains a unit vector in the direction of the vector of the 
quaternion. 

    

q = a + bi + cj+ dk

= T q( )
a

T q( )
+
T v( )
T q( )

!
bi + cj+ dk

T v( )

"

#
$
$

%

&
'
'
,

= T q( ) cos( + sin(
v

T v( )

"

#
$
$

%

&
'
'

= T q( ) cos( + sin(v"# %& .

 

The angle, 

� 

! , is the angle of the quaternion and 

� 

v  is the unit quaternion in the direction 
of the vector of the quaternion.   

It turns out that if one has two vectors, ! and ", then it makes sense to consider the 
ratio of " to !  to be a quaternion R such that the unit vector of R is the axis of rotation 
that turns ! into " , # is the angular excursion of that rotation, and T is the ratio of the 
length of "  to the length of ! .  To see how that is possible, one must examine the rules for 
addition and multiplication of quaternions. 

Quaternions add much as complex numbers did.  Individual components add. 

� 

a
1

+ b
1
i + c

1
j+ d

1
k[ ] + a

2
+ b

2
i + c

2
j+ d

2
k[ ] = a

1
+ a

2( ) + b
1

+ b
2( )i + c

1
+c

2( )j+ d
1

+ d
2( )k[ ] . 

Quaternions multiply algebraically with the following rules. 
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� 

i ! i = j ! j = k !k = !1 and 

i ! j = k , j !k = i , k ! i = j ,

j ! i = !k , k ! j = !i , i !k = !j .

 

There are several observations that one might make here.  All the vector components 
are imaginary numbers, because their square is -1.  However, they are different 
imaginary numbers because the product of two different components is the third 
component or its negative.  The order of multiplication is relevant.  When the product is 
cyclic in the direction  i ! j! k ! i , then the product is positive, when it is in the 
opposite direction, then it is negative.  These rules can be applied to the multiplication of 
two quaternions as follows. 

� 

a
1

+ b
1
i + c

1
j+ d

1
k[ ]! a2 + b

2
i + c

2
j+ d

2
k[ ] =

a
1
a
2
" b

1
b
2
" c

1
c
2
" d

1
d
2( ) + a

2
b
1

+ a
1
b
2
" c

2
d
1

+ c
1
d
2( )i

+ a
2
c
1
+a

1
c
2

+ b
2
d
1
" b

1
d
2( )j+ -b

2
c
1

+ b
1
c
2

+ a
2
d
1

+ a
1
d
2( )k

# 

$ 
% 
% 

& 

' 
( 
( 
.
 

The actual multiplication of quaternions is tedious because one must be careful to 
maintain the order of the imaginary components, which takes a great deal of care.  
However, it is easy to train computers to carry out the operation, so in practice one 
usually delegates the multiplication to a machine, except in simple cases.  Much the same 
applies to the multiplication of matrices, which also require one to be very careful of 
details.  A few simple cases will be done below to illustrate the principles.  However, the 
power of this approach becomes evident when one is dealing with the more complex 
situations where machine multiplication is almost essential. 

There is one other concept that needs to be introduced before we return to the 
consideration of anatomical rotations.  In quaternion analysis it makes sense to take the 
ratio of vectors and it makes sense to have an inverse of a vector.  In fact every quaternion 
has a unique inverse.  The inverse will not be derived here, but it is relatively easy to see 
that the inverse is indeed an inverse.  If a quaternion is written in trigonometric form then 
its inverse can be immediately written down as well. 

� 

If q = T cos! + sin! " v[ ],  then q
#1

=
1

T
cos! # sin! " v[ ] .

q "q#1
= T cos! + sin! " v[ ]"

1

T
cos! # sin! " v[ ]

= cos
2 ! # sin

2 ! " v" v{ } ,  but v" v = #1, therefore

q "q#1
= 1.0 .

 

One can verify that the square of a vector is -1 by substituting the appropriate values 
in the formula for quaternion multiplication given above.  In most of the situations that 
arise in anatomical movements, the rotation quaternion is a unit quaternion and the T 
term is 1.0, so the inverse of a quaternion is obtained by simply writing the quaternion 
with the vector of the inverse equal to the negative of the vector of the quaternion. 
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Quaternion Rotations 

Let us consider a simple problem in which it is possible to begin applying quaternions 
to model rotations.  First, assume that we have a vector that is aligned with the i axis, and 
we wish to turn it through 90° about the k axis.  Since the axis of rotation is 
perpendicular to the vector that is being rotated, it is possible to use the definition of a 
quaternion to write the expression for the rotation. 

  
k! i = j "

j

i
= k . 

The first expression follows directly from the rules for the multiplication of the 
imaginary components.  However, we can confirm its truth by starting with the 

observation that the ratio of j to i is

� 

k = cos
!

2
+ sin

!

2
k , therefore, if we multiply both 

sides by i we get the first expression.  Note that one must be careful to multiply in the 
same order on both sides. 

� 

iji!1 = ki!1 =
k

i
= !j,  whereas ji!1i = j . 

 
The quaternion k is the ratio of the vector j to the vector i.  In quaternion 
analysis vectors are a special case of quaternions, that is, quaternions for 
which the scalar is 0.0.  From this figure it is also obvious that i is the ratio 
of k to j and j is the ratio of i to k.  The ratio of two orthogonal vectors is 
always a vector, because cos $/2 =0.0.  Conversely, any vector can be 
expressed as a ratio of two orthogonal vectors. 

One can use simple multiplication by a quaternion to model a rotation only when the 
vector that is being rotated is perpendicular to the axis of rotation, as was the case here.  
Otherwise, it is necessary to use the slightly more complex, but more general, rule when 
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computing a rotation (

� 

! v = r " v" r
#1 ).  In this instance, the angular excursion is 90° and 

the axis of rotation is the positive k axis, therefore the rotation quaternion (r) has an angle 
of 45°, which is half of 90°.  Using the general formula for rotations, the product is as 
follows. 

� 

cos
!
4

+ sin
!
4
"k

# 

$ 
% 

& 

' 
( " i" cos

!
4
) sin

!
4
"k

# 

$ 
% 

& 

' 
( 

=
1

2
+
k

2

# 

$ 
% 

& 

' 
( " i"

1

2
)
k

2

# 

$ 
% 

& 

' 
( 

=
i

2
+
j

2
+
j

2
)
i

2
= j

 

This second calculation was needlessly complex for this situation, but if the situation 
were different, then it would be essential to use the second, more general, form of 
multiplication.  To illustrate this point, let us consider an instance where the rotation 
causes the moving vector to sweep out a conical surface. 

Consider the rotation of the vector i+k rotated 90° about the k axis.  The calculation 
is like the last one except for having i+k in the place of i.  We know that the result should 
be j+k and that is what the calculation yields. 

� 

1

2
+
k

2

! 

" 
# 

$ 

% 
& ' i + k( )'

1

2
(
k

2

! 

" 
# 

$ 

% 
& 

=
i

2
+
j

2
+
k

2
(
1

2

! 

" 
# 

$ 

% 
& '

1

2
(
k

2

! 

" 
# 

$ 

% 
& 

=
i

2
+
j

2
+
j

2
(
i

2
+
k

2
+
1

2
(
1

2
+
k

2
= j+ k
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When the axis of rotation is not perpendicular to the rotating vector, then 
the more general formula for rotation is necessary.  Such rotations are 
called conical rotations, because they sweep out a conical surface. 

Of course, these are very simple and straightforward calculations, chosen so that the 
correct vector is apparent from the pictures.  The correct vector is much less apparent if 
the axis of rotation is at an odd inclination and the angular excursion is not a neat 
fraction of a circuit.  In such circumstances, the resultant vector is slightly more difficult to 
calculate, but still readily calculated with the simple method illustrated here.  Additional 
concepts involving quaternions will be introduced as we go along, but a great deal can be 
done with what has been introduced so far. 

Spin and Swing 

Spin and swing have been long-standing concept in kinesiology (White and Panjabi 
1978; Nordin and Frankel 1989; White and Panjabi 1990; Bogduk and Twomey 1991; 
Williams, Bannister et al. 1995; Bogduk 1999).  They are fairly intuitive in that spin is 
basically the rotation of an object about its axis and swing is a rotation of an object in 
which an axis of the object sweeps out an arc.  Pure swing occurs when the arc is confined 
to a plane perpendicular to the axis of rotation.  If one turns one’s head from looking 
straight ahead to looking over a shoulder, then one’s head experiences a spin about a 
vertical axis that runs between the occipital condyles.  On the other hand, if one nods 
one’s head, then it swings about a horizontal axis through the occipital condyles.   

There is clearly a problem with these intuitive concepts.  It is apparent in the manner 
in which the descriptions were given.  Each involved a definite reference structure and an 
axis of rotation.  If the nose had been chosen to be the reference in the first instance, then 
one would say that it swings about the vertical axis.  The same movement is both a spin 
and a swing.  Consequently, spin and swing are not descriptions of a movement, unless 
one knows the context in which it being viewed. 

These concepts imply a frame of reference, with a differential weighting of the axes of 
the frame such that one axis is taken a the principal feature of the object, and an axis of 
rotation that that feature moves about.  In most situations where the terms are used, the 
frame of reference is not stated and often the axis of rotation is not explicitly stated either.  
Sometimes one can deduce the implied frame of reference from the context of the 
description, sometimes one cannot.  If a lumbar vertebra swings to the left, what does that 
mean?  One assumes that the anterior midline of the vertebra is the point of reference 
and that the axis of rotation lies in the mid-sagittal plane.  However, the axis may be the 
superior/inferior axis or the anterior/posterior axis or an axis somewhere in between 
vertical and horizontal.  It may pass through the vertebral body, through a facet joint or 
through a point that lies completely outside the vertebra.  In each case the movement is 
quite different.  Clearly, this situation is unsatisfactory, if one wishes to seriously discuss 
anatomical movement.  And yet, spin and swing capture something that seems very 
intuitive.  One might ask if there is a way to rescue the concepts while creating the 
precision that is necessary to accurately and clearly describe movements? 
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Consider an example of an anatomical object that is rotating.  A lumbar vertebra is 
chosen and a frame of reference, {r, s, t}, is attached so that the r axis is directed 
perpendicular to the anterior face of the vertebral body, the s vector points directly to the 
left and the t vector is perpendicular to the superior face of the vertebral body.  Note that 
the attachment is not to any particular point in or on the vertebra, because orientation 
does not have location.  Let the center of the vertebra lay midway between the superior 
and inferior surfaces of the vertebral body and midway between the anterior and 
posterior surfaces in the mid-sagittal plane.   

A lumbar vertebra has a body that is about 2.5 cm high, 3.0 cm deep, and 3.5 cm 
wide.  A point on the superior surface might be expressed by the extension vector {r. s. 
t} = {0.0, 0.0, 1.25}.  The center of the anterior face would be {1.5, 0.0, 0.0} and the left 
lateral margin would be {0.0,1.75, 0.0}.  The usual description usually assumes that the 
point of reference is the anterior midline of the vertebral body.  The frame of reference is 
usually assumed to be the one illustrated here.  The axis of rotation is often unclear, but it 
is often implicitly assumed to be a vertical axis aligned with the longitudinal axis of the 
body.  Let us consider a few possibilities. 

 
In this example the frame of reference is aligned with the 
anterior/posterior (r), medial/lateral (s), and superior/inferior (t) axes of 
the lumbar vertebra.  The axis of rotation (

� 

v
R
) is approximately the axis of 

lateral rotation for the vertebra. 

Rotation about an axis through the center of the vertebra 

 If the axis of rotation runs through the center of the vertebral body and perpendicular 
to the superior and inferior surfaces of the vertebral body, then the rotation is expressed 
by the following quaternion. 

  

� 

R = cos! + v
R
" sin! ; v

R
=1.0 ! t . 

Let {r, s, t} = {i, j, k}, then the rotation of the three extension vectors can be written 
down by inspection.  The calculation is written in terms of an array of extension vectors. 
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� 

! h 

! d 

! w 

" 

# 
$ 

% 
$ 

& 

' 
$ 

( 
$ 

= R) 2
*

h

d

w

" 

# 
$ 

% 
$ 

& 

' 
$ 

( 
$ 
*R) 2

+1
= cos

,
2

+ ksin
,
2

- 

. 
/ 

0 

1 
2 *

0 0 1.25k{ }

1.50i 0 0{ }

0 1.75 j 0{ }

3 

4 

5 
5 
5 

6 

7 

8 
8 
8 

* cos
,
2
+ksin

,
2

- 

. 
/ 

0 

1 
2 

= cos
,
2

+ ksin
,
2

- 

. 
/ 

0 

1 
2 *
1.25k

1.50i

1.75 j

3 

4 

5 
5 
5 

6 

7 

8 
8 
8 

* cos
,
2
+ksin

,
2

- 

. 
/ 

0 

1 
2 .

 

If the angular excursion is 45° to the left, then the calculation can be carried out and 
the new values for the height, depth, and width extension vectors written down. 

� 

! h 

! d 

! w 

" 

# 
$ 

% 
$ 

& 

' 
$ 

( 
$ 

= R) 2
*

h

d

w

" 

# 
$ 

% 
$ 

& 

' 
$ 

( 
$ 

*R) 2

+1
=

1.25k

1.06066i +1.06066 j

+1.23744 i +1.23744 j

" 

# 
$ 

% 
$ 

& 

' 
$ 

( 
$ 

. 

The height vector, h, is not changed by the rotation.  That is because it experiences 
spin.  Spin does not alter the direction of a spun vector.  Since the extension vector for 
height is expressed in terms of that vector and only that vector, it is not altered. 

Both the depth vector, d, and the width vector, w, experience pure swing.  They move 
in the plane perpendicular to the axis of rotation.  By inspection one can see that the new 
values are the correct values for 45° rotation to the left about a vertical axis through the 
center of the vertebra. 

Rotation about an axis not through the center of the vertebra 

If the axis of rotation is not through the center of the vertebral body, but though the 
center of the spinal canal, then the change of orientation is the same.  Consequently, the 
above calculations are still valid.  However, since the location does depend on the 
position of the center of the vertebral body relative to the axis of rotation, we must 
perform an additional calculation.  Let the axis of rotation be through a point in the 
center of the spinal canal {-2.0, 0.0, 0.0}, then the vector to the center of the vertebral 
body is {2.0, 0.0, 0.0}.  The new location, in coordinates relative to the center of rotation, 
is given by the following expression. 

� 

! L = R" 2
#L#R" 2

$1
= cos

%
2

+ ksin
%
2

& 

' 
( 

) 

* 
+ #2.0i# cos

%
2
$ksin

%
2

& 

' 
( 

) 

* 
+ 

=1.41421i +1.41421j

 

The new location of the center of the superior face of the vertebral body is the location 
of the vertebra plus the extension vector for the superior face, 1.414 i + 1.414 j + 1.25 k, 
and similarly for the other two points, (2.474871 i + 2.47487 j) and (0.17677 i + 2.65165 
j), respectively. 



 10 

Rotation about an axis tilted relative to the frame of reference 

This situation can be generalized further by allowing the axis of rotation to be tilted 
relative to the frame of reference for the vertebra.  First consider the situation where the 
axis of rotation is through the center of the vertebra.  Let the axis of rotation be tilted 45° 
anterior when superior to the vertebral body.  That makes the quaternion that expresses 
it a function of i and k. 

  

� 

R = cos! +
r + t

2
! sin! = cos! +

i + k

2
! sin!

R" 2
= cos

!

2
+
i + k

2
! sin

!

2
.

 

The new height, depth, and width vectors are computed much as before, but the 
calculations are somewhat more complex because of the tilted axis of rotation. 

  

� 

! h 

! d 

! w 

" 

# 
$ 

% 
$ 

& 

' 
$ 

( 
$ 

= R) 2
*

h

d

w

" 

# 
$ 

% 
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,
2

+
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2
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2
+
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+
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2
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2 .
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d

w
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$ 
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$ 
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0.183058i * 0.625 j +1.06694k

1.28033i + 0.75 j + 0.21967k

*0.875 i +1.23744 j + 0.875k

" 

# 
$ 

% 
$ 

& 

' 
$ 

( 
$ 

. 

You can check that these are still orthogonal vectors by taking the ratio of any two in 
the appropriate sequence.  The unit vector of the ratio is the unit vector of the third 
extension vector.  It is easier to see what is occurring if we examine the transform of the 
frame of reference, because of the symmetry of the vectors. 
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+
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+0.5i + 0.7071707 j + 0.5k
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It is straightforward to check that the three transformed unit vectors are still 
orthogonal, by taking the ratio of each pair and getting the third vector.  It is also easy to 
show that the ratio of the transformed r and t vectors to the original vectors has an angle 
that is not 45° or 0°, therefore neither transformed vector is perpendicular to or parallel 
with the original vector.  Consequently, neither experienced a spin or a pure swing.  The 
angle of the ratio of the transformed s vector to its original value is 45°, therefore it 
experienced a pure swing.  That is what one would expect from the geometry of the 
situation. 

Now consider the situation when the axis of rotation is tilted posterior when superior 
to the vertebral body.  The equations can be written with minor changes from the set that 
have just been considered.  
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Much the same remarks can be made about this transformed frame of reference as 
was noted for the anteriorly tilted axis of rotation.  The principle differences are a change 
in the sign of some of the coefficients.  Of course, the transformed orientations are quite 
different from each other. 

Fryette’s Laws or Principles 

In 1918, a chiropractor named Harrison H. Fryette formulated two principles related 
to physiological spinal movement, which were extended in 1948 by another chiropractor, 
named C.R. Nelson, so there are three laws or principles.  They are as follows. 

I.  When the thoracic and lumbar spine is in a neutral position (easy normal), the 
coupled motions of sidebending and rotation for a group of vertebrae are such that 
sidebending and rotation occur in opposite directions (with rotation occurring toward the 
convexity).  

II.  When the thoracic and lumbar spine is sufficiently forward or backward bent (non-
neutral), the coupled motions of sidebending and rotation in a single vertebral unit occur 
in the same direction.  

III.  Initiating motion of a vertebral segment in any plane of motion will modify the 
movement of that segment in other planes of motion. 
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The calculations that we have just performed have a bearing upon these observations.  
The observations relate to a view of the spine and its movements that divides all 
movements up into cardinal movements in three orthogonal planes.  Rotations in a 
sagittal plane are flexion, if you bend forward, and extension, if you bend backwards.  
Rotations in the coronal plane are sidebending or side flexion to the right or the left, 
where the direction is named for the direction that the superior aspect of the vertebra 
moves relative to the inferior aspect.  Rotation in a horizontal plane are simply called 
rotation to the right or left, where the direction is named for the direction that the 
anterior aspect of the vertebra moves relative to the posterior aspect.   

According to this way of classifying movements the excursions that our lumbar 
vertebra experienced was not a single circular movement about an axis of rotation, but a 
combination of a sidebending and a rotation, that is, two coupled movements about two 
mutually orthogonal axes.  Leaving aside the needless and misleading obfuscation 
introduced by this approach, let us consider the computed movements from the point of 
view of cardinal planes of rotation.   

Viewed face-on, from directly in front of the vertebra, the transformation of the 
vertebra that rotated about an anteriorly tilted axis, appears to be a rotation to the left 
and a side-flexion to the right.  The vertebra that rotated about a posteriorly tilted axis, 
appears to rotate to the left and side-flex to the left as well.  Clearly, the designation of 
right and left is completely arbitrary for both sidebending and rotation, so whether both 
move in the same direction is arbitrary.  However, much is made of this apparent 
coupling of lateral rotation and side-flexion.  These are the relationships encoded in 
Fryette’s laws.  The association has been ascribed to properties of the vertebra, but one 
can see from the calculations that were just performed that it is a property of any 
rotations in three-dimensional space.  To the extent that the coupling is due to the 
vertebra, the constraints on rotation imposed by the facet joints are important to 
determining the axis of rotation.   

However, Fryette’s laws do not relate to the axis of rotation of the vertebra, but to the 
consequences of side-flexion of the lumbar spine as a whole.  Basically, Fryette’s laws say 
that if the spine is at rest, then the axes of rotation for the spine are tilted anteriorly 
relative to the frame of reference for the vertebrae.  If the spine is taken into an endrange 
configuration, then the axes of rotation are shifted to tilt posteriorly relative to the 
orientations of the vertebrae.   

The third law is due to the restraints imposed upon the spine by the ligaments and 
facet joints of the vertebrae so that as a vertebra approaches one of the restraints upon its 
movement, it reduces the extent to which it can move.  That is hardly a startling 
observation.  It would be much more impressive if the nature of the restraint predicted 
the nature of the limitation.  In fact it does, but the third law says nothing about such 
things.  The interesting aspect of Fryette’s laws are not what they say about movements, 
but what they imply about the determination of the axes of rotation in the spine. 

Consider a lumbar vertebra such as illustrated above.  The axis for sidebending is 
between the inferior facet joints, approximately in the midline, if the vertebra is 
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approximately in neutral position. As one facet slides down the other slides up (0° axis).  If 
the vertebra is in a situation where the back is in endrange of flexion or extension, then in 
order to sideflex, one facet must slide down or up while the other acts as a fulcrum for the 
movement.  There is no other way to move.  In both situations, the inferior margin of the 
spine is another fulcrum, either because of abutment with the subjacent spine (maximal 
extension) or because it is at the end of a maximally stretched interspinous ligament 
(maximal flexion).  As indicated upon the figure that means that the axis of rotation is 
elevated approximately 30° (maximally flexed) or depressed 30° (maximally extended).  
We can see from the next figure that the axis of rotation is approximately 30° laterally 
directed as well. 

 
The axes of sideflexion rotation for full extension and full flexion are tilted 
about 30° relative to the approximate axis for sideflexion in neutral 
position.  The two points that are thought to determine the axis of rotation 
in endrange positions are the inferior margin of the spine and the upper 
and a lower limits of the facet joint.  The axes are also tilted about 30° 
laterally (see below). 

 
The abutment or tethering of the vertebral spine and the facet joint force 
the axis of rotation to be through the points of restriction.  For a lumbar 
vertebra, that means that the axis shifts from the midline to an axis 
directed about 30° lateral to the midline and tilted up or down about 30° 
(see previous illustration). 

Given these observations, we can write out axes of rotation for the sidebending 
movements.  For neutral position, the axis is simply parallel with the r axis.  If we let the r 
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axis of the frame of reference be in the direction of the i component of the universal 
coordinates then we can write the expression for the neutral rotation quaternion. 

� 

R
N

= cos! + r sin! = cos! + isin! . 

Similarly, we can write the rotation quaternions for the endrange movements. 

� 

R
E

= cos! + vE sin! = cos! + (icos30°" jsin30°"ksin30°)sin!

= cos! + (0.866 i " 0.50j" 0.50k)sin! .

R
F

= cos! + vE sin! = cos! + (icos30° + jsin30° + ksin30°)sin!

= cos! + (0.866 i " 0.50j+ 0.50k)sin! .

 

For each axis of rotation we can compute the transformation of the vertebra’s 
orientation frame, f, as was done above. 
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# f #R" 2
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With 45° of rotation the new frames of reference are as follows. 
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For neutral position the sideflexion has no rotation component, however, if the axis of 
rotation is tilted inferiorly, then there will be a concurrent rotation in the same direction 
and if it is tilted up there will be a rotation in the opposite direction.  According to 
Fryette’s laws, this would mean that the axis of sideflexion in neutral position is usually 
tilted so that its anterior end is superior to its posterior end.  Given the anterior lumbar 
convexity, it might generally be the case that the axis of sideflexion lies in such a 
relationship, superiorly tilted, to the lumbar vertebrae being examined. 

In endrange extension, the vertebra moves into right sideflexion and right rotation.  In 
endrange flexion, the vertebra moves into left sideflexion and right rotation.  The 
inclination of the axis of rotation has opposite consequences in the two situations. 

Of course the magnitude of the rotations are not 45°.  Most measurements would 
place them at less than 10° in adults.  If such a rotation occurs then the magnitudes of the 
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concurrent movements are substantially less. Using 10° of sideflexion in the endrange 
situations, where the effect is largest gives a transformed orientation like the following. 
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Given the dimensions of a lumbar vertebra, on the order of one or two centimeters, the 
concurrent movements are on the order of one or two millimeters.  Given that the 
palpable part of the vertebra is the vertebral spine, which lies nearly on the axis of 
rotation for sideflexion in endrange positions, the movements would be much smaller.  
There must be some skepticism about whether such concurrent movements can be 
palpated on the individual vertebral level. 
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