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Transformations of Orientation: Revisiting Swing and Spin 

Let us return to the concepts of swing and spin and try to put them on a more precise, 
quantifiable, basis (Standring 2005).  Consider their properties.  In a spin the object does not 
change its location, but it does change its orientation.  In pure swing the object changes its 
location, but its entire trajectory lies in a single plane.  If the arc is about a center that does not lie 
in the plane of the movement, then it is called swing.  The movement in a general swing is a 
conical rotation.  The key to swing is the change in both orientation and location.  Change in 
location without changing the orientation of the object is a translation.   

Transformations of orientation are not intrinsically either spin or swing, because orientation 
does not have location, but the change in orientation that occurs during the movements is central 
to understanding those concepts (Langer 2005b; Langer 2005c; Langer 2005d; Langer 2005e; 
Langer 2005f).  In the next few sections we will explore the concepts of spin and swing. 

A simple example 

 
The knight stands in here as a simple orientable object.  The different images of 
the knight are placed adjacent to a sphere to illustrate the movements of the 
knight as excursions on the surface of the sphere.  Orientation does not have 
location, consequently, the different versions of the knight may be placed in any 
order in space.  However, this ordering illustrates the relationships between 
movements and orientation.  

 Knight B is obtained by rotating knight A 90° along the vertical meridian. Knight 
D is obtained by moving knight A 90° to the right to C and then 90° along the 
vertical meridian to D.  Clearly orientations, B and D, are different, although all 
the trajectories follow great circles, therefore introduce no spin. 
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Null Spin 

During a pure swing, orientation changes in a special way.  The orientations assumed by an 
orientable object as it travels along a great circle arc are said to have null spin relative to each 
other. There is null spin because movement along a great circle is pure swing, meaning there is 
no spin.  That means that although the orientation changes the axes maintain their sense.  

 In the above illustration the knight at C is oriented so that it looks away from the center of 
the sphere with its head directed towards the north pole and its left side directed to the east.  The 
same sort of relationship exists between A and B and C and D, but not between B and D.  If B 
and D are superimposed, so that they had the same location, then it would require a spin to 
convert one into the other.   

Note that location is key.  If D were translated to a position opposite C and B were translated 
to a position opposite A, then they would have null spin relative to each other, but they would 
have 180° of spin relative to the knights situated opposite them.  In general, if a knight travels 
along different great circles to the same location, which would have to be an antipode, then the 
orientations of the two images of the knight will be rotated relative to each other. 

If the orientation frame of reference is centered upon a point in the surface of a unit sphere, 
then the excursion it experiences in pure swing is comparable to its following a great circle on 
that unit sphere.  We might use the familiar example of the geographical globe to illustrate this 
point.  For instance, if the origin of the frame lies upon the equator with its first vector, r, 
pointing perpendicular to the surface of the sphere, its second vector, s, pointing due east and its 
third vector, t, pointing due north, then movement along the equator or a meridian of longitude 
will be a great circle trajectory.  Let the initial values of the frame be 

� 

r, s, t{ } = i, j, k{ }.  When 
the frame slides up the vertical meridian to the north pole, the frame rotates. 

� 

r, s, t{ } = k, j, ! i{ } . 

However, r continues to point directly away from the center of the sphere, s continues to 
point east, and t continues to point north until the frame actually reaches the north pole and all 
directions along the surface are south. [The north pole is a geographical singularity, but not a 
hard singularity, because it is an artifact of the way that we label the globe and it not a property 
of space.  It does not form a singularity in the universal coordinate system, which we are using 
here.]  When traveling along a great circle, the orientation of a frame changes, but in such a 
manner as to maintain the sense of the original orientation.  This type of movement will be called 
a null spin rotation. All frames of reference for orientations obtained by moving along a great 
circle have null spin relative to each other.  Pure swing has null spin. 

The term null spin has the potential to be confusing, because an orientable object does rotate 
as it moves along a great circle on the surface of a sphere, but all of the rotation is accounted for 
by its change in location, therefore it has no spin in the technical sense used in kinesiology. 

Consider what occurs if the frame moves along the equator through 90°.  The values of the 
frames vectors change in a different manner, but all orientations obtained by traveling along the 
equator have null spin relative to each other.  One may appreciate that by noting that the r axis 



 3 

continues to point away from the center of the sphere, the s axis continues to point east and the t 
axis continues to point north.  In this case there is not a geographical singularity. 

Consequently, there is a type of equivalence that exists between the orientations that a frame 
experiences as it moves along a great circle.  All the orientations along the vertical meridian have 
null spin relative to the initial orientation and all the orientations along the equator have null 
spin relative the original orientation. Note, however, that, with the exceptions of the initial 
orientation, orientations along the vertical meridian excursion do not have null spin relative to 
orientations along the equatorial excursion.  That is easily demonstrated by considering the 
consequences of moving 90° along the equator and then 90° along the vertical meridian from 
that point, to bring the frame to the north pole.   

� 

r, s, t{ } = i, j, k{ } ! r, s, t{ } = j, " i, k{ } ! r, s, t{ } = k," i, " j{ } 

Each of the swings is a great circle, therefore all the orientations experienced by the moving 
frame have null spin relative to the their starting orientation, but the final orientation has a clear 
spin relative to the orientation obtained by moving directly north on the vertical meridian. 

� 

k,! i, ! j{ } " k, j, ! i{ } . 

For orientation, null spin equivalence does not transfer.  If we use the symbol, 

� 

! , to express 
null spin equivalence and 

� 

O
N
to symbolize the orientation of a frame N then, if 

� 

O
A
!O

B
 and 

� 

O
B
!O

C
, it is not generally true that 

� 

O
A
!O

C
.    

Ratios of Orientations 

The property of having null spin relative to a standard orientation will be called spin 
neutrality.  Spin neutrality may seem like a rather arcane concept, but it lies at the foundations of 
an understanding of spin and swing.  To address this point it is necessary to introduce a second 
concept, the ratio of orientations.  To start, note that all possible orientations may be 
expressed as a frame of reference and that any orientation may be transformed into any other 
orientation by a rotation about a single axis of rotation.  In general, the axis of rotation is not 
parallel to any of the axes of the frame of reference and no axis in the final frame is parallel with 
its direction in the initial frame. The problem that needs to be addressed is how one can 
determine the axis of rotation and the angular excursion that will carry the initial orientation into 
the final orientation.  That information is expressible as a quaternion.  So we are searching for a 
method that will yield the quaternion that is the ratio of the final orientation to the initial 
orientation.   

One method of finding the ratio of two orientations uses the definition of a quaternion.  
Assume that you have a frame of reference for an object prior to a rotation 

� 

f = r, s, t{ }and the 
transformed frame after the rotation 

� 

! f = ! r , ! s , ! t { }.  The goal is to find a single rotation that 
carries 

� 

f into

� 

! f .  That may be achieved by first finding a rotation that carries one axis of f  into 
the comparable axis of 

� 

! f .  Any of the three axes will work.  For present purposes, let the 
selected axis be the r axis.  The quaternion for that rotation, 

� 

Q
1
, is the ratio of the post-rotation 

axis to the pre-rotation axis. 
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� 

Q1 =
! r 

r
" r = q1 #r #q1

$1
; s = q1 # s#q1

$1
; t = q1 # t #q1

$1 ,

where q1 v1,%1 2[ ] is Q1 v1 ,%1[ ] with half the angle of the quaternion.

 

Once we know the rotation quaternion, it is possible to compute an intermediate frame, 

� 

f = r , s , t { }, such that

� 

f = q
1
! f !q

1

"1.  The intermediate frame has its r axis aligned with the  !r  
axis of the final transformed frame, because that was the basis for computing 

� 

Q
1
.  Unless very 

special conditions are present and the first rotation brings the initial frame into alignment with 
the transformed frame, the intermediate frame will have its s and t axes rotated relative to those 
in the final frame.  If we choose one of those axes and take the ratio of the final transformed axis 
to the intermediate transformed axis, then we will have a second quaternion that expresses the 
rotation that will bring the intermediate frame into alignment with the final frame, 

� 

Q
2
. 

� 

Q2 =
! s 

s 
" ! r = q2 #r #q2

$1; ! s = q2 # s#q2

$1; ! t = q2 # t #q2

$1 ,

where q2 v2,%2 2[ ] is Q2 v2,%2[ ] with half the angle of the quaternion.

 

The vector of the quaternion will be the  !r  axis that was used in the calculation of the first 
quaternion.  It is only the angular excursion that is unknown. 

The quaternion that expresses the rotation that carries f into 

� 

! f  is the product of the two 
component quaternions. 

� 

q
12

= q
2
!q

1
. 

� 

! f = q
2
q
1
" f "q

1

#1q
2

#1
= q

2
q
1
" f " q

2
q
1( )

#1

= q
12
" f "q

12

#1
. 

The transform associated with 

� 

q
1
 is a rotation about its vector, which may be any unit vector, 

and the transform associated with the 

� 

q
2
 transform is a rotation about the frame axis that was 

chosen for the first ratio.  The actual first and second quaternions will depend upon the axis 
chosen for the first transform.  However, the combined transform will be the same no matter 
which axis is chosen for the first transform. 

An Illustrative Example 

Let us apply this tool to the example that we considered above, that is, the rotations to the 
north pole by two different routes.  The starting orientation (A) is 

� 

r, s, t{ } = i, j, k{ } for both 
trajectories.  The final orientation for the vertical meridian trajectory (B) is 

� 

r, s, t{ } = k, j, ! i{ }  
and the final orientation for the two-step trajectory (D) is 

� 

r, s, t{ } = k,! i, ! j{ } .  Clearly, the first 
trajectory is a great circle trajectory and so when one computes the first quaternion it will rotate 
the initial orientation into the final orientation.  Let the chosen axis be the r axis. 

� 

Q
1

=
k

i
= k !"i = "j . 

When we multiply the initial orientation by the quaternion the results are the final 
orientation. 
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� 
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The final orientation of the second trajectory has the same first quaternion, because the r axis 
is the same in that orientation as it is in the first transformation.  Therefore, we can address the 
second quaternion ratio of the orientations.  Let the chosen axis be the s axis. 

� 

Q
2

=
!i

j
= !i"!j = k . 

One can see by inspection that it is the correct axis of rotation, but multiplying out the 
expression confirms that the quaternion rotates the intermediate frame of reference, in this case 
B, into the final frame, D. 

� 

1

2
+
k

2

! 

" 
# 

$ 

% 
& '

k

j

(i

) 

* 
+ 

, 
+ 

- 

. 
+ 

/ 
+ 

'
1

2
(
k

2

! 

" 
# 

$ 

% 
& =

k

(i
(j

) 

* 
+ 

, 
+ 

- 

. 
+ 

/ 
+ 

. 

Consequently, we can write down the quaternion that rotates the initial orientation into the 
final orientation for the two-step trajectory. 

� 

q
12

=
1

2
+
k

2

! 

" 
# 

$ 

% 
& '

1

2
(
j

2

! 

" 
# 

$ 

% 
& 

=
1+ i ( j+ k

2

=
1

2
+

3

3

i ( j+ k( )

3

= cos 60° + sin 60°'
i ( j+ k( )

3
.

 

This means that if we rotate the initial orientation 120° about an axis that passes through the 
front left upper quadrant 

� 

i ! j+ k( ) , then it will have the final orientation indicated by the knight 
labeled D in the above illustration. 

Alternative Interpretations 

Note that in the first calculation, for the great circle trajectory, it is also possible to have 
chosen the s axis as the basis for the first quaternion.  In which case, the first quaternion would 
be 1.0 and the second quaternion would be

� 

!j.  Orientation alone does not differentiate between 
spin and pure swing.  Whether a movement is a spin, a pure swing, or a general swing depends 
upon how it transforms the object’s location.  If the axis of rotation is not through the center of 
the object, then the situation is clearly a swing.  If it is, then the object experiences a spin.  If the 
knight moves in a great circle on the surface of a sphere, as illustrated above, then the 
transformation is a pure swing.  If it rotates in place, about its center, then it experiences a spin.   
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In addition, it seems that, in common practice, the term spin is often taken to imply that the 
rotation is about an axis of the frame of reference.  However, since the axes of a frame of 
reference are seldom explicitly defined, it is difficult to be sure of this requirement. 

Let us reexamine the two-stage trajectory, this time choosing the ratio of the s axes as the first 
quaternion.  The first quaternion is readily computed. 

� 

Q
1

=
!i

j
= !i"!j = k . 

If you multiply the initial frame of reference by the half angle version of the first quaternion, 
then the intermediate frame is 

� 

j, ! i, k{ }.  Since the final orientation is 

� 

k,! i, ! j{ } , it is 
straightforward to compute the second quaternion, by choosing one of the other axes, and then 
the equivalent rotation. 

� 

Q
2

=
k

j
= k !"j = i or Q

2
=
"j
k

= "j!"k = i.

Q
12

= q
2
!q

1
=

1

2
+
i

2

# 

$ 
% 

& 

' 
( !

1

2
+
k

2

# 

$ 
% 

& 

' 
( =
1

2
+

3

2

i " j+ k( )

3
.

 

The first rotation is a 90° rotation about the t axis and the second rotation is -90° rotation 
about the s axis of the intermediate frame of reference. 

If you choose the t axis for the first quaternion then the ratio is i and the second rotation 
quaternion is 

� 

!j.  Consequently, the equivalent rotation is the same as in both the other 
calculations.  In this instance, the first rotation is a 90° spin about the r axis of the initial frame 
and the second a 90° spin about the t axis of the intermediate frame of reference. 

Consider another ratio of frames, related to the one just considered, but a bit less obvious.  
The original frame of reference is the same, 

� 

r, s, t{ } = i, j, k{ }.  The final frame is given by the 
following expression. 

� 

r

s

t

! 

" 
# 

$ 
# 

% 

& 
# 

' 
# 

=

2i + j+ 2k

3

(2i + 2j+ k

3

(1i ( 2j+ 2k

3

! 

" 

# 

# 

$ 

# 

# 

% 

& 

# 

# 

' 

# 

# 

. 

The first quaternion for the ratio, based on aligning the r axes, is readily computed. 

� 

Q
1

=

2i + j+ 2k

3

i
=

2 ! 2j+ k

3
"#Q1

= 48.1897° and vQ1

= !0.894427j+ 0.447214k . 

The second quaternion is a 36.8699° rotation about the r axis. 
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� 

Q
2

=
4 + 2i + j+ 2k

5
. 

When we compute the half angle forms of these rotation quaternions and multiply them 
together, the result is - 

 

� 

q
12

= 0.866025 + 0.288675i ! 0.288675j+ 0.288675k

" #q12

= 30° and vq12

=
i ! j+ k

3
.

 

The intermediate steps do not give obvious values, such as one might write down from 
inspection, but the end result is that the final orientation is equivalent to rotating the initial frame 
of reference 60° about the unit vector that lies at the center of the forward upper left quadrant of 
the universal coordinate system.  The power of quaternion analysis becomes apparent when one 
becomes involved with problems in which the angles and axes of rotation are not convenient 
multiples of pi, especially when using a computer that has a programmed function to take the 
ratios of frames, which would be the normal way of obtaining this result. 

Uses for the Ratio of Frames 

The ratio of frames is a very useful tool when describing the anatomy of a jointed orientable 
object, such as a humerus.  If the location of the bone is known, along with its orientation, then 
one can express the location of other features as extension vectors written in terms of the frame 
of reference for the bone.  The orientations of the facet joints can be written as rotations of the 
bone’s frame of reference, that is, a quaternion.  Using the ratio of the frames is much more 
efficient than listing all the associated frames of reference explicitly. The vector of the ratio 
quaternion transforms like an orientation vector, so rotations of the bone can be applied directly 
to the ratio of the frames and the new frame can be obtained by multiplying the frame of 
reference by the ratio quaternion. Such relationships, where two orientations remain in a fixed 
relationship to each other, will be called linkages. 

Another type of relationship can be defined for the bones on the two sides of a joint.  A frame 
of reference can be defined for the bone on each side of the joint, when the joint is in a particular 
configuration.  Such a relationship can be expressed as a ratio of the two frames.   

However, the spatial relationship between the two frames may be changed by rotation about 
an axis of rotation, which is a description of the joint action.  We can define the joint’s action as 
the ratio between two orientations of the moving bone.  For instance, if 

� 

f
0
 is the orientation of 

the bone prior to the movement and 

� 

f
!

is the orientation of the bone after moving 

� 

!  degrees, 
then the ratio of 

� 

f
!

 to 

� 

f
0
 is the axis of rotation for the joint moving between those placements.  

Unlike the other ratios of frames, such a joint rotation quaternion has a location, which may be 
written as one of the extensions of the bone.  Variable ratios of frames, such as exist in joints will 
be called concatenations.  

These concepts can be better appreciated by using them in an a example.  We will now 
consider a problem that involves the bones of the arm and forearm.  Both types of frame ratio 
will be used. 
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An Illustrative Example 

Let the humerus suspended at rest from the glenohumeral joint be in its neutral position.  The 
frame of reference for the bone will have the r axis directed straightforward, the s axis directed 
medially, and the t axis directed superiorly.  Let the universal coordinates be such that the frame 
is aligned with them. 

� 

r, s, t{ }
Humerus

= i, j, k{ } . 

Then the head of the humerus is rotated about 30° posterior to the frontal plane and tilted 
135° up relative to the shaft of the humerus. 

� 

fHead = q sup !qpost ! fHumerus !qpost

"1
!q sup

"1 ;

Qpost = cos30° + sin30°! tHumerus and

Qsup = cos45° + sin45°! # r , # r = qpost !rHumerus !qpost

"1 .

 

 

 

If we evaluate these expressions, the frame of reference for the head has the s axis directed to 
the center of the articular surface, the r axis is directed anteriorly and medially, and the t axis is 
directed superiorly, laterally, and anteriorly. 

� 

f
Head

=

r

s

t

! 

" 
# 

$ 
# 

% 

& 
# 

' 
# 

Head

=

0.866i + 0.500 j

(0.354 i + 0.612 j+ 0.707k

0.354 i ( 0.612 j+ 0.707k

! 

" 
# 

$ 
# 

% 

& 
# 

' 
# 

 

The trochlea of the elbow joint is tilted about 45° superior relative the long axis of the 
humerus, but, for present purposes aligned with the long axis of the bone, with its axis of rotation 
directed medially.  Because the articular surface is a spiral, the axis of rotation will shift as the 
angle between the humerus and the ulna change, but that complication will not be introduced 
here.  The frame of reference will be given by the following expression, where the r axis points 
anterior and inferior and the t axis is directed anterior and superior.  The s axis points directly 
medially. 
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� 

f
Trochlea

= q
tilt
! f

Humerus
!q

tilt

"1

Q
tilt

= cos45° + sin45°! s
Humerus

.

f
Trochlea

=

0.707i " 0.707k

j

0.707i + 0.707k

# 

$ 
% 

& 
% 

' 

( 
% 

) 
% 

.

 

The sense of the olecranon process of the ulna is rotated about 90° superiorly, about a 
medially directed axis.  Consequently, the frame of reference for the olecranon process is 
expressed relative to the frame for the trochlear as follows. 

� 

fOlecranon = q joint ! fTrochlea !q joint
"1 ,

Q joint = cos "90°( ) + sin "90°( )! sTrochlea .

fTrochlea =

0.707i + 0.707k

j

"0.707i + 0.707k

# 

$ 
% 

& 
% 

' 

( 
% 

) 
% 
.

 

 

 

At rest the frame of the ulna has its r axis directed anteriorly, its s axis directed medially, and 
its t axis directed superiorly.  The orientation of the olecranon process is tilted about 45° 
superiorly relative to the long axis of the ulna, so we can also describe the olecranon orientation 
in terms of the ulna orientation. 
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� 

f
Olecranon

= q
bend

! f
Ulna

!q
bend

"1
,

Q
bend

= cos "45°( ) + sin "45°( )! sUlna .

f
Trochlea

=

0.707i + 0.707k

j

"0.707i + 0.707k

# 

$ 
% 

& 
% 

' 

( 
% 

) 
% 
.

 

If we know the orientation of the olecranon, then the orientation of the ulna can be computed 
by inverting the relationship. 

� 

f
Ulna

= !q
bend

" f
Olecranon

"!q
bend

!1
,

!Q
bend

= cos45° + sin45°" s
Ulna

.

f
Ulna

=

i

j

k

# 

$ 
% 

& 
% 

' 

( 
% 

) 
% 

 

The center of the humerus (

� 

C
Humerus

) will be initially at 

� 

0, 0, 0{ }.  Let us assume a humerus 
that is 33 centimeters long, which will place the center of the humeral head (

� 

CR
Head

) at about 

� 

0, 0,15{ } and the center of the trochlea (

� 

CR
Trochlea

) at about 

� 

1.5, 0, !16{ } . Let the ulna be 25 
centimeters long, placing its initial location (

� 

C
Ulna

) about 

� 

0, 0, ! 27{ } , 16 centimeters for the 
humerus and 11 centimeters for the ulna.  The center of rotation for the olecranon process 
(

� 

CR
Olecranon

) is 

� 

0, 0,11{ }, relative to the center of the ulna.  To the first approximation, the center 
of rotation for the trochlea is coincident with the center of rotation for the olecranon. 

Now, consider the effect of a 45° rotation in the shoulder about the s axis of the humeral 
head and a 30° rotation about the axis of the trochlear/olecranon joint so as to flex the ulna on 
the humerus.  First, it is useful to write the descriptions of the two bones from the perspective of 
the head of the humerus. The humeral head is set to 

� 

0, 0, 0{ }, which makes the location of the 
humerus 

� 

0,0,!15{ }  and the trochlea 

� 

1.5, 0, ! 31{ }.  The center of rotation for the trochlea will be 
the same and the location of the ulna will 

� 

0, 0, !11{ }  relative to that center of rotation.   

The orientation of the head of the humerus will be rotated by the shoulder movement. 

� 

! f 
Head

= q
shoulder

" f
Head

"q
shoulder

#1
,

Qshoulder = cos #45°( ) + sin #45°( )" sHead

= cos #45°( ) + sin #45°( )" #0.354 i + 0.612 j+ 0.707k( ) .

! f 
Head

=

0.862i # 0.079 j+ 0.500k

#0.356 i + 0.612 j+ 0.707k

#0.362 i # 0.787 j+ 0.500k

$ 

% 
& 

' 
& 

( 

) 
& 

* 
& 
.

 

The orientation of the humerus is obtained by applying the rotation at the shoulder to the 
initial orientation. 
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� 

! f 
Humerus

= q
shoulder

" f
Humerus

"q
shoulder

#1
,

! f 
Humerus

=

0.744 i # 0.563 j+ 0.360k

0.437i + 0.817 j+ 0.377k

#0.506i # 0.123 j+ 0.854k

$ 

% 
& 

' 
& 

( 

) 
& 

* 
& 

.
 

The center of the humerus swings to 

� 

7.59i +1.85 j!12.803k{ } and the center of rotation for 
the trochlea moves to 

� 

16.809i + 2.973 j! 25.920k{ }.  The orientation of the trochlear locus is 
readily computed. 

� 

! f 
Trochlea

= q
shoulder

" f
Trochlea

"q
shoulder

#1
,

! f 
Trochlea

=

0.884 i # 0.311j# 0.349k

0.437i + 0.817 j+ 0.377k

0.168i # 0.485 j+ 0.858k

$ 

% 
& 

' 
& 

( 

) 
& 

* 
& 

.
 

The orientation of the olecranon process after flexing the shoulder and prior to flexing the 
elbow may be computed in the same manner. 

� 

! f 
Olecranon

= q
shoulder

" f
Olecranon

"q
shoulder

#1
,

! f 
Olecranon

=

0.168i # 0.485 j+ 0.858k

0.437i + 0.817 j+ 0.377k

#0.884 i + 0.311j+ 0.349k

$ 

% 
& 

' 
& 

( 

) 
& 

* 
& 

.
 

After both operations the new orientation is the product of the two quaternions.  We obtain 
the axis of rotation at the elbow from the s axis in the frame of reference for either the trochlea 
or the olecranon following the shoulder movement. 

� 

! f 
Olecranon

= q
elbow

"q
shoulder

" f
Olecranon

"q
shoulder

#1 "q
elbow

#1
,

! f 
Olecranon

=

#0.296 i # 0.265 j+ 0.917k

0.437i + 0.817 j+ 0.377k

#0.849 i + 0.512 j# 0.127k

$ 

% 
& 

' 
& 

( 

) 
& 

* 
& 

.
 

The orientation of the ulna is straightforward to compute, since its description prior to the 
movements is simple. 

� 

! f 
Ulna

= q
elbow

"q
shoulder

" f
Ulna

"q
shoulder

#1 "q
elbow

#1
,

! f 
Ulna

=

0.391i # 0.550 j+ 0.738k

0.437i + 0.817 j+ 0.377k

#0.810i + 0.175 j+ 0.559k

$ 

% 
& 

' 
& 

( 

) 
& 

* 
& 

.
 

The location of the middle of the ulna is the location of the olecranon plus eleven times the 
negative t axis for the frame of the ulna. 

� 

16.809i + 2.973 j! 25.920k{ }!11" !0.810 i + 0.175 j+ 0.559k( ) = 25.722i +1.048 j! 32.0723k  
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The distal end of the ulna lies at 

� 

37.066i !1.403 j! 39.903k. 

Using the methods developed to this point, it is possible to compute the locations, extensions, 
and orientations of any bones moving about any joint with an accuracy commensurate with the 
accuracy of their anatomical descriptions.  However, it is often easier to appreciate these results if 
they are used to generate images that illustrate the movements of the bones.  The next section 
considers such a calculation. 

Arm Swing 

 
The blue lines represent a humerus that is swinging about an axis of rotation that 
is tilted into the center of the anterior lower left quadrant 

� 

r, s, t{ } = 1, !1, !1{ }.  
The red lines indicate the directions of the r and s axes of the orientation frame, 
starting with the r axis directed anteriorly and the s axis directed medially in the 
pendant arm, hanging straight down.  The t axis is aligned with the longitudinal 
axis of the humerus.  The point of view is from straight in front of the right 
shoulder. 

The methods used in the last section can be used repeatedly to plot the excursion of a 
movement.  In the above figure, the placement of the humerus has been computed for a series of 
10° rotations about a fixed axis of rotation.  In the illustrated example, the axis of rotation is 
approximately the central axis of the humeral head.  It is tilted 45° anteriorly, 45° caudally, and 
45° laterally.  In a sense, this is pure flexion in that the rotation is a spin about the central axis of 
the humeral head.  The curved trajectory is due to the facet surface being tilted superiorly and 
medially. 
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