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LECTURE L
(Articles 1 to 86; Pages 1 to 32.)
ADDITIONS AND SUBTRACTIONS OF LINES AND POINTS.
INTRODUCTORY remarks (1848),. . . . . . . Articles1, 2, 3; Pages 1 to 4.

§ 1. General views respecting the four signs, + - x — ; primary signification
proposed for the mark — in geometry, as a characteristic of ordinal ana-
lysis, or of analysis of position ; geometrical difference of two points,
point minus point ; analytic aspect of the symbol, B — A ; examples and
illustrations, . . . , . . ., . , . « Articles 4 to 14; Pages 4 to 14.

§ 1. Synthetic aspect of the same symbol, B— 4, as denoting the step or VECTOR,
a, from A to B ; distinetion between veetor and radius-vector; the vee-
tor is simply a directed right line in space; interpretations of the equa-
tions, B~A=a, B=a+4a4; proposed primary use of +in geometry, as
a characteristic of ordinal synthesis, or sign of vection, or of the transport
of a point from one position to another ; geometrical sum of line and
point, line plus point ; synthesis of the conceptions of step and beginning
of step, producing the conception of end of step as their result; this end
of step may in this view be equated to “step plus beginning of step ;"
vector plus vehend equals vectum, vector minus vehend equals vector; re-
vection, revector, revehend, revectum ; geometrical identities, B~ A+
A=B, a+A—A=a, . . . . . . . Articles 15 to 26 ; Pages 15 to 25.

§ . Provection (successive vection of a point, not generally along the same
straight line); provector =¢c—B=b; provehend = vectum =B; pro-
vectum = ¢ identity, ¢ = (¢ —~B)+ (B~ A) + 4, provectum equals pro-
vector plus vector plus vehend ; illustration, . Articles 27 to 29 ; Pages 25 to 27.

§ 1v. Transvection (transport of a point at once from A to ¢, substituted for two
successive transports, from A to B, and from B to 0); transvector =c¢—
A=cj transvehend = vechend =A; transvectum = provectum = c;
abridged identities, c— A= (c—B) + (B~ 4), c—B = (c—a)—~(B-4A);
TRANSVECTOR FQUALS PROVECTOR PLUS VECTOR ; provector equals
transvector minus vector; (c— a)ta=c¢, (b+a)—a=b; illustra-
tions, . . . . . . . . . . . . Articles 30 to 35; Pages 27 to 31.
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§ v. Addition and subtraction of lines corresponding to composition and a P
sition of vections, or of motions ; line plus line, and line minus line, each
equal to some third line; these operations on lines are NOT PECULIAR TO
QUATERNIONS, but are regarded here as secondary operations of ordinal
synthesis and analysis, the primary combinations having been of the forms,

line plus point, and point minus point, . . . . Article 36; Pages 31, 82.

LECTURE IL
(Articles 37 to 78; Pages 33 to 73.)

GENERAL VIEWS RESPECTING MULTIPLICATION AND DIVISION IN GEOME-
TRY; SQUARES AND PRODUCTS OF ¢, j, k.

§ vi. Recapitulation ; QUOTIENT of two directed lines (which quotient is after-
wards shewn to be in this calculus a QUATERNION), B+ a=¢q, ¢ x a=f3;
the signs of division and multiplication, or <~ and x, are considered here
as marks of cardinal analysis and synthesis in geometry, expressing re-
spectively the investigation and the employment of a certain metrographic
relation, existing partly between the lengths, and partly between the di-
rections, of any two vectors, or steps, or rays in space ; faction, FACTOR,
faciend, factum (the factor here introduced is afterwards shewn to be a
quaternion) ; identities, 8+ axa=p, gxa--a=q; refaction, Te-
factor, reciprocal cardinal relations, . . . Articles 37 to 44; Pages 33 to 89.

§ vi.. Profaction, profactor, y <~ B=r, rx 3=y ; transfaction, transfactor,
Y-a=$ sxa=y=rxXqxXda, $=rxq; TRANSFACTOR EQUALS
PROFACTOR MULTIPLIED INTO FACTOR, profactor equals transfactor di-
vided by factor; (y=+1B)x (B=+a)=y=+a, (y=+a)-+(B-+a)
= (7 = B); (+=qg)xg=s (rxq)—q=r; triangle of vections,
pyramid of factions; composition and decomposition of operations of the
factorkind, . . . . . . . . . . Articles 45 to 56 ; Pages 39 to 48.

§ vir. Examples; case where the rays compared have all one common direction ;
operations on length, TENSION ; signless numbers, TENSORS; null lines,
opposite lines, use of plus and minus as factors, namely, as signs of non-
tersion and inversion ; symbols 0, + 2a, — 2a; rule of the signs ; positive
and negative numbers, SCALARS ; these scalars are simply the reals of or-
dinary algebra, . . . . . . . . . Articles 57 to 64; Pages 48 to 58.

§ 1x. Case where the rays compared have all one common length, operations on
direction ; VERSION regarded as a species of GRAPHIC MULTIPLICATION,
or as an operation of the factor kind, thus performed on the direction of a
line; versor multiplied into vertend equals versum, versum divided by
vertend equals versor ; proversion, transversion, successive rotations of a
line, each rotation separately being performed in some one plane, but the
successive planes being different ; PROVERSOR INTO VERSOR EQUALS
TRANSVERSOR ; composition and decomposition of versions, or of plane ro-
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tations of & line: to know fully what particular act of version has been

performed, we must know through what angle, in what plane, and to-

wards which hand (or round what axis, and through what amount of

right-handed rotation), the line has been made to turn, . . . . . .
Articles 65, 66; Pages 58 to 61.

§ x. Illustrations from meridional and extra-meridional transit telescopes, and
from the theodolite, or other instrument moveable in azimuth ; non-com-
mutative character of the composition of versions in rectangular planes ;

ixj=h, jxk=i kxi=j;
in="k, ka:—i, i)(k:—j;
iXi=jxj=bxk=—1=(-);

every QUADRANTAL VERSOR is a SEMI-INVERSOR, and as such is a geome-
trical square root of negative unity, or of the sign minus ; every such
versor is represented, in the geometrical applications of this calculus, by a
VECTOR-UNTT, drawn in the direction of the axis of the version: thus the
symbols 4, j, & come to denote here three rectangular vector-units (sup-
posed usually, in these Lectures, to be in the directions of south, west, and
up); and the formula ¢ x j = % is found to receive fwo distinct but closely
connected interpretations, . . . . , . Articles 67 to 78 ; Pages 61 to 73.

LECTURE IIL
(Articles 79 to 120; Pages T4 to 129.)

OTHER CASES OF MULTIPLICATION AND DIVISION IN GEOMETRY ; CONCEP-
TION OF THE QUATERNION; NOTATIONS, K, T, U.

§ x1. Recapitulation ; additional illustrations of the effects of i, j, k, as operators ;
maultiplication of any one line in space, by another perpendicular thereto ;

the product is (in this system) a third line, perpendicular to both the fac-

tors ; its length is numerically the product of their lengths; and the di-
rection of the same product-line is obtained from that of the multiplicand

line, by a positive and quadrantal rotation, performed round the mul-

tiplier line as an axis; non-commutative character of such multiplication,

quation of perpendicularity, a3 =~ Ba, if 3 1_ a ; these results are exten-

sions of those expressed by the formule, i = &, ji=—4,. . . . .

Articles 79 to 82; Pages 74 to 79.

§ x11. The product of a scalar and a vector, or of a number and a line, is a Zine,
of which the length and the direction are very easily assigned, and are
found to be independent of the order of the factors ; aa = aa ; for example,
the symbols iz, jy, k2, denote the same three rectangular lines as i, yj,
zk ; namely, when this system is brought into connexion with the Carte-
sian method of co-ordinates, the three rectangular projections of the line
drawn from the origin (0, 0, 0), to the point {2, ¥, 2), e

Article 3 ; Pages 79, §0,
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§ xur, The product of two parallel lines is a number, namely, the numerical pro-
duct of the lengths of the factors; but this number is taken negatively or
positively (in THIS calculus), according as they agreeor differ in their di-
rections ; thus, the SQUARE of EVERY VECTOR i3 a NEGATIVE SCALAR,
a? <0 (as we had i?=j2= k2=—1); this remarkable result is a simple
geometrical consequence of the composition of fwo successive and quadran-
tal rotations about any common axis in space ; commutative character of
the multiplication of parallel vectors, equation of parallelism, af3 = (3a,
ifBla, - . . « .« « . « . . . . Articles 84, 85; Pages 80 to 82.

§ x1v. Powers of unit-vectors ; symbols «f, t'x, where ¢ is such an unit-line in
space, and « a vector L. ¢ ; the first of these two symbols («f) denotes a
wversor, not generally quadrantal ; the second (k) denotes a line, which is
formed from & by a positive and plane rotation of ¢ quadrants, round ¢ re-
garded as an axis; examples, . . . . . . . Article 86; Pages 82, 83.

§ xv. Multiplication of two inclined lines ; their product x\ (which is afterwards
shewn to be a quaternion) may also be considered as the product of a ten-
sor and a versor ; whereof the tensor is the numerical product of the
lengths of the two factor lines ; while the versor has its azis in the direc~
tion of the axis of positive (namely, in these Lectures, right-hunded) rota-
tion, from the multiplier line k to the multiplicand line A, and has its angle
equal to the supplement of the angle of this last rotation ; examples; ver-
sor and reversor; CONJUGATE VERSORS, conjugate products, CHARACTE-
RISTIC OF CONJUGATION K; K. t=¢%, K. kh=Xe, . . . . . .
Articles 87 to 89; Pages 83 to 87.

§ xvI. Resolution of every act of faction into a metric and a graphic element, or
into an act of tension, and an act of version ; theletters T and U are em~
ployed in this calculus as characteristics of the two separate operations, of
TAKING THE TENSOR, and TAKING THE VERSOR, or of taking separately
the fwo factor-elements, Tq and Ug, of any proposed factor ¢, or of any
product or quotient of two lines, when regarded as such a factor ; identi-
ties, ¢g=TgxUg=UgxTq; T.Ug=1, U.Tg=+; T.Tq=Tyg,
U.Ug=Uq, . . . . . . . . . . . . Anticle 90; Pages 87 to 89.

§ xvir The tensor Tg (by §§ vir, xvL) is always to be conceived as a single
number, expressing the ratio in which the factor g changes the length of
the line a on which it operates ; but (by §§ 1x., xvr ) the versor Ug, which
may generally be put (see § x1v.) under the form of a power «¢ of an unit-
vector t, with a scalar exrponent, t, requires for its complete numerical de-
termination a system of three numbers ; namely, the number (¢) of qua-
drants contained in the angle of the version; and some two angular
co-ordinates or other equivalent system of two numbers, to fix the direc-
tion in space of the axis (1), or to identify on a globe or chart the star, or
to fix the region of infinite space, towards which that axis is pointed; it
follows therefore that the lately considered product of tensor and versor,
Tq . Ug, or (see § XVL) the equivalent factor g, depends upon, and con-
versely includes within itself, a SYSTEM OF FOUR NUMBERS, as necessary
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for its complete identification, or full numerical determination ; and there-
fore that a GEOMETRICAL FACTOR of this sort may properly be called a

xiii

QUATERNION, . . . . . . . . . . . . Artide 91; Pages 89, 90.

. When the fuctor, g, is regarded (see § v1.) a3 8 GEOMETRICAL QUOTIENT
=3 <~ @ =DB - D4, it may conveniently be pictured or constructed bya
BrravIAL, ADB, with a curved arrow inserted, and directed Jrom the ini-
tial ray DA (the faciend, or divisor-line, a), towards the final ray DB (the
factum, or dividend-line, 3) ; the point », from which the two rays di-
verge, is the vertez of the biradial; a biradial has a SHAPE, or species, de-
pending on the ratio of the lengths of its two rays, and also on the angle
which they include ; two biradials may be similar, namely, by their agree-
ing with each other in these two respects; but a biradial has also a’ plane,
and an ASPECT, determined by and directed towards that star, or region
of infinite space, which the plane may be said to face, and as seen from
which the rotation from the initial to the final ray would appear to be po-
sitive (right-handed) ; condirectional and contradirectional (or opposite)
biradials, included in the class of parallel biradials ; two biradials, which
are at once similar and condirectional, are said to be EQUIVALENT BIRA-
DIALS; examples; it is propose:i to employ (see § xx.) the conception
and construction of such biradial figures to assist in determining the con-
ditions of equality between two geometrical quatients, B+ a,and d - y;
and also in enumerating the modes of possible inequality, of any two such

quotients, . . . . . . . . . . . Articles 92 to 95 ; Pages 90 to 95.

Analogous determinations for differences of points (see § 1.), constructed or
pictured by straight lines, with straight arrows attached ; interpretations
of the two equations D—C=B—4A, D=B— A+ C ; D is here the fourth
corner of a parallelogram, of which ¢, a, B are three successive corners,
and of which the altitude may vanish ; inversion and alternation of an
equation between differences of points, c— A+ B=B— A + ¢ ; vectors are
equal, when they differ only in their situations in space; addition of vec-
tors still corresponds to composition of vections, although they are not
nOW given as successive (compare § v.) ; such addition is commutative and
associative, a+f3=0+a, (y+B)+a=y+(B+a); the sum of any
set of vectors is simply that one resultant vector which produces the same
total or final effect, in changing the position of a point, as all the pro-
posed summand vectors would do, if the motions, of which they are sup-
posed to be the instruments, were simultaneously or successively per-
formed ; the sum of two directed and co-initial sides of a parallelogram is
the intermediate and co-initial diagonal ; most of the foregoing results
of this section (X1X.) are eommon to several other modern theories ; a vec-
tor (in space) is a species of NATURAL TRIPLET, suggested by geometry,
and found to be capable of a riple variety, or to depend upon a system of
three distinct elements, which admit of being expressed numerically, and
correspond to the TRIDIMENSIONAL character of SPACE; in the present
caleulus (compare § x11.), a vector may be represented generally by the
TRINOMIAL FORM. 0 =1ix + jy + kz, where x, 7. z are three scalar (or Car-
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tesian) co-ordinates, while i, j, k are those three rectangular vector- units,
which were introduced (see § x.) in the foregoing Lecture, . . . . .
Articles 96 to 101 ; Pages 95 to 105.

§ xx. EQUIVALENT BIRADIALS (see § Xv1IL) correspond to EQUAL QUOTIENTS ;
examples ; in fact a biradial may be turned round in its own plane, or
transported parallel to itself, or its legs may be altered proportionally,
without changing the relative direction, or the relative length, of those
two legs, or rays, or vectors, and therefore without affecting that complex
(metrographic) relation between the two rays which has been considered
(in § v1.) as determining their geometrical guotient ; hence in this calcu-
lus, as in many other modern systems, the equation § -~ y=0 -+ a, be-
tween two quotients, is interpreted as signifying a proportionality of
lengths, combined with an equality of angles in one plane, between the two
pairs of lines, a, 3, and v, 8; BUT, when we come to take account of the
PLANE OF THE ANGLE, between any two such lines a, 8, and to regard
that plane as VARIABLE IN SPACE, there arises a NEW DOUBLE VARIETY,
in the geometrical quotient 5 = a, or in the numerical elements on which
it depends; because we introduce hereby the consideration of the AsprcT
(see § xviL.) of the plane, or of the biradial, and thus bring into play (or
at least may be conceived to do so) a NEW PAIR OF NUMBERS, such as
those which determine in astronomy the inclination of the plane of
the orbit of a planet or comet to the ecliptic, and the longitude of its node,
in addition to that FORMER PAIR OF NUMBERS, which determine the ratio
of the lengths of the two lines compared, and the magnitude of the angle
between them : the GEOMETRICAL QUOTIENT OF TWO VECTORS is found
therefore again (compare § xviL), in this new way, by consideration of its
representative biradial, to involve or depend upon a SYSTEM OF FOUR
NUMBERS (two for shape, and two for plane), and to be (see again § xvr.),
in that sense, a QUATERNION, . . . Articles 102 to 107 ; Pages 106 to 112.

§ xx1. Multiplication of two arbitrary quaternions, effected by means of their re-
presentative biradials, prepared so that the final ray of the multiplicand
may coincide with the initial ray of the multiplier, as factum and profaciend ;
and therefore so that the identity (y - 8) x (B~ a)=y + a, of § vir.,
may be employed to form the PRopuUCT ; this process is absolutely free from
vagueness in its conception, and altogether definite in its results, which
therefore are adapted to become the subject matter of THEOREMS; exam-
ple, here stated by way of anticipation, ¢"¢'. ¢ = ¢". ¢’ ¢; this is the as-
sociative principle of multiplication of quaternions, and will be afterwards
fully discussed (in Lectures V., VL., VIL); Division of Quaternions may
obviously be effected by an entirely analogous process, e e

Article 108 ; Pages 112, 113,

§ xxu1. Before entering on the general theory of operations on quaternions, we
may perform operations on numbers, and on lines, regarded as particular
cases of quaternions ; for example, we can shew that the fensor of @ sca~
Tar is the absolute (or arithmetical) value of that scalar, T (£3)=3:
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and that the tensor of a vector is the number expressing the length of that
vector, Ti=Tj=Tk=1; T.eA=Tk.T\, T(\-=&)=TA = Te;
Tp=+v ~p% Tw=4/1w; it will be proved (in § Lx1r) that gene-
rally the tensor of 2 quaternion q is
Tg=T (w+p) =V(u?-p?);
examination and explanation of a formula which may seem at first a pa-
radox, . . . . . . . . . . Articles 109 to 112 ; Pages 113 to 117.

§ xxur. The versor of a positive scalar is the sign +, or the factor + 1; the
versor of a negative scalar is the sign —, or the factor — 1 ; the versor Up,
of a vector p, is the wvector-unit in the direction of that vector, Up=p
=+ Tp=p -V (—p2), (Up)2=~1; the versor of zero, U0, is generally
an indeterminate symbol, but it may decome determinate, if we know, in
any particular investigation, the law according to which the scalar or vee-
tor tends to vanish ; a tensor may be treated as a positive scalar (instead
of & signless number) ; the conjugate of a scalar is the scalar itself, but
the conjugate of a vector is equal to that vector reversed, Kw =+ w,
Kp=—p; it may be remarked by anticipation, that the conjugate of a
quaternion is, generally, see § Lxur.,

Kg=K@w+p)=w—p, . . . . . . . .
Articles 113, 114; Pages 118, 119.

§ xx1v. Powers of vectors, the exponents being still scalars, but the vector bases
being not now unit-lines (compare § X1v.) ; such powers are quaternions ;
examples: the tensor of the power is the power of the tensor, and the per-
sor of the power is the power of the versor ; T. pt = (Tp)t="Tp, U. [
=(Up)*=Up?; the power p?, when operating as a factor on aline ¢ 0,
produces another line 7= pte, which also is perpendicular to p; the direc-
tion of this new line r is formed from that of o by a rotation through ¢
quadrants round p, and its length bears to the length of ¢ a ratio expressed
by the £ power of the number Tp which expresses the length of p ; the
power, or quaternion, or quotient, p? =1 =~ ¢, degenerates into a scalar
when ¢ is any even integer ; p°, for example, is positive unity, and p? is a
negative number, = — Tp? (compare §§ xurr., XXIL); on the other hand
the power p? degenerates from a quaternion into a vector, when the ex-
ponent ¢ is any odd whole number, for example, pl' =p; another and
more important example is the reciprocal of P, or the power p-1; this
power is a line, which, when operating as a factor on a line ¢ perpendicu-
lar to p, has the effect of dividing the length of ¢ by the number Tp, and
of causing its direction to turn negatively (or left-handedly) through a
guadrant, round p as an axis; the tensor and versor of the reciprocal are
respectively the reciprocals of the tensor and versor, T (p-1)=(Tp)-3,
U(p-1)=(Up)1=-Up, p-l= —Tp-1.Up; any two RECIPROCAL
VECTORS, p and p-1, have their DIRECTIONS OPPOSITE, and their
LENGTHS RECIPROCAL; the product 3x a1 is equal to the quotient

B =~ @, and may be denoted more concisely by Ba-! or by E, while the re-
a
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1
ciprocal a-! may also be denoted by — o for powers of vectors with scalar

exponents, we have generally (as in algebra), pmon=pm+a,
Articles 115 to 118 Pages 119 to 125.

§ xxv. TMustrations from the logarithmic spiral; the quotient of two vectors
(in space) may generally be put under the form of @ power, pt, where
the dase p is a vector, depending (see § X1xX.) on a system of three num-
bers, and serving to fix the aspect and angle of a spiral ; while the ex-
ponent, t, is (as in § xx1v.) a scalar, and serves to mark (in this mode
of illustrating the subject) the fraction of a quadrant at the pole; the
QUOTIENT of two rays is therefore again found, in this new way, to be a
QUATERNION, or to depend generally on a system of four numerical ele-
ments, . . . . . . . . . . . Articles 119, 120; Pages 125 to 129.

LECTURE IV. ¢
(Articles 121 to 174 ; Pages 130 to 185.)

PROPORTIONS OF LINES IN ONE PLANE, POWERS AND ROOTS OF QUATER-
NIONS; NOTATIONS, |||, /¢, AX.q; GEOMETRICAL EMPLOYMENT OF
—1, AS A PARTIALLY INDETERMINATE SYMBOL.

§ xxv1. Recapitulation ; constraction of a quadrantal quaternion or of the quo-
tient of two rectangular lines (compare § X1.) by a line drawn in the di-
rection of the axis of the versor of this quotient or quaternion, and with a
length which represents the Zensor of the same quadrantal quaternion ;
thus the rotation round the quotient-line, from the divisor line to the di-
vidend-line, is positive (compare again § x1); examination and confirma-
tion of the consistency of this conception of a quotient-line, with earlier
principles of this calculus ; division of one line by another (§ vi.) may
be regarded, in this view, as a case of the division of one guotient (§ viL.),
or of one quaternion (§ XXL), by another quotient or quaternion, but the
results of these different views agree ; an equation between quotients may
in like manner receive fwo distinct but harmonizing interpretations, of
which one is that (comparatively) usual one, referred to in § xx., while
the other seems to be peculiar to quaternions, . .

Articles 121 to 126 Pages 130 to 139.

§ xxvir. On the same plan two distinct methods of interpretation may be applied
to the symbol 3 <+ a X y, where a, 3, y are supposed to be three coplanar
lines, y ||| a, B; but they both conduct to one common line { as the re-
sult, namely, to that fourth line, in the plane of a, 8, v, which is, in seve-
ral other systems also, regarded as the FOURTH PROPORTIONAL to those
three lines, and satisfies, in a sense already mentioned (§ xx.), the equa-
tion § <~ y = 3 =~ a, or the proportion a:8:: y:d, which admits of in-
version and alternation ; this proportion gives two others, between the ten-
sors and the versors respectively (see §§ xx11.,, XX111.) of the four coplanar
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lines; we may write §=0Ba-1.y, and § = yat. (3, but are not yet enti-
tled to write §=p3.a-ly, nor d=y.a-18, because the associative
principle of multiplication (compare § xxr.) has not as yet been proved ;
we may already see that (on the principles above employed) the fourth
proportional to three lines which are NOT coplanar CANNOT BE ANY LINE ;
in fact it will be shewn, in the Fifth Lecture, to be a non-quadrantal qua-
ternion, . . . . . . . . . . Articles 127 to 130; Pages 189 to 144.

§ xxvii. When the three lines a, {3, y are coplanar, and are supposed to be ar-
ranged as the base, Bc, and the two successive sides, CA, AB ( following the
base), of a triangle inscribed in a circle, the fourth proportional § may he
constructed by a certain line ar, which fouckes, at the vertex A, the seg-
ment BCA (or ACE), or which coincides with the initial direction of motion
along the circumference, from A fo B, through c; if a quadrilateral Apcp
be inscribed in a circle, and if the first side AB be divided by the second
side BC, and the quotient multiplied into the third side ¢, the resulting
line, DF = AB =~ BC x cp, will have the direction opposite to that of the
fourth side pa, or the direction of that fourth side itself, according as the
quadrilateral is an uncrossed or a crossed one; the results of this section
(§ xxviL), respecting fourth proportionals to three sides of an inscribed
triangle or quadrilateral, do not essentially require, for their establishment,
any principles peculiur to quaternions, . Articles 181, 132; Pages 144 to 148.

§ xx1x. The THIRD PROPORTIONAL to any two lines a, y is easily constructed,
as a third line ¢, coplanar with them; but when we have thus the propor-
tion @:y::y:¢ we must Nor generally, in the present calculus, write the
usual algebraic equation between square and product, v2=a¢, nor
¥?=¢a; in fact these two equations are equally truein algebra, and in se-
veral modern geometrical systems, but ae is not generally equal to ¢a in
quaternions, on account of the generally non-commutative character of
maltiplication (see §§ x., X1, Xv.) ; we may however write, under the
conditions supposed, ea-1={ya-1)2, ae-1=(ye-1)2, if we retain, for
quaternions geverally, the notation ¢2 = g x q, with the corresponding de-
Jinition of a square ; in like manner we must not write, in this calculus,
as a general expression for a MEAN PROPORTIONAL, y = + v ac, bu may
write y =+ (sa~1)* a, in which expression it is proposed to take the upper
sign, when y bisects the angle itself between the directions of ¢ and €, ﬁ ! * Z k
but the lower sign when it hiscets the. supplement, of that angle; in the 4 A
former of these two cases, y may be said to be by eminence THE MEAN A,Q(‘Zv
proportional between a and ¢, its length being also a mean between
theirs; the mean between two given vectors is thus in general a deter-
mined vector; but when the two vectors have opposite directions, their
mean proportional may then take any direction in the plane perpendicular
to the extremes, . . . . . . . . Articles 133, 134; Pages 148 to 151.

§ xxx. Analogous interpretations of the two symbols (Ba-Mq, (ﬁa'l)ia, as
denoting the SIMPLEST PAIR of mean proportionals, inserted between a
and §3; these two means must not, in the present calculus, be denoted ge-

C
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nerally by the symbols, ,6’é o, [ﬁ' a?; the tensor and versor of the cube
root of a quaternion may be regarded as being respectively the cube-roots
of the tensor and the versor; in general we may interpret the POWER ¢* of
any quaternion q, with any scalar exponent ¢, as being a new quaternion,
of which the tensor and the versor are respectively the same (¢%) powers
of the tensor and the versor of the old or given quaternion, which is pro-
posed as the BASE of the power ; thus (compare § XX1v.),

T.gt=(Tq)t="Tqt, U.q'=(Ug)t=Ug';

and we may conceive that this latter power of @ wersor is itself another
versor, which has the effect of turning any line «, in a plane perpendicular
to the axis of Ug, or of g, through an angle, or amount of rotation, posi-
tive or negative, represented by the product ¢ x £ q; but in order to deve-
lope and apply this general conception, we must first fix definitely what is
to be understood in general by the ANGLE, or amplitude, . g, of a quater-
nion, or of a versor, . . . . . . . Articles 135, 136; Pages 151 to 153.

§ xxxu If we allow this amplitude £ g to take any one of the values included in
the formula /¢ = 6 + 217, where 6 denotes an Euclidean angle, §>0,
< m, we shall then have #wo values for a square root, three for a cube root,
&c., as in the usual theory of roots of unity, and as in those modern geo-
metrical systems which represent all such powers or roots by lines, whereas
with us they are quaternions ; examples: this view of / q would give
’l (gl)zté\-}-? @+ 0y, L (g% =u21+ 2 (mu+m), A.q’“‘:(u-}-t)a
+2 (ut )+ 2w, £ (gv. ¢)=(u+t)g+2(t+mu+n)m; andin
order that we should have generally g ¢* = g%+, it wounld be necessary
and sufficient to assume p = m =, or, in other words, we should assume
one common value 2;'+ 217 for / q, in forming the three powers here com-
pared ; and after making this assumption, it would still be necessary, in
general, to retain that value ¢ (§ + 2I) of the power ¢, which was im-
mediately given by the multiplication £ x / ¢, and not to add to this pro-
duct any maltiple 21'r of the circumference, before proceeding to form, by
a second multiplication, the angle of the power of « power of a quater-
nion, if we wish that this new power shall satisfy generally the equation
(ge=g, . . . . . . . . Articles 137 to 147 ; Pages 153 to 163.

§ xxxi. But for the sake of avoiding as much as possible all multiplicity of
value of elementary symbols, it appears convenient to define that the nota-
tation / ¢ shall represent the simplest value of the angle, or that one
which most conforms to ordinary geometrical usage, namely, the angle in
the first positive semicircle, which was lately denoted by §, admitting
however 0 and 7 as limits, and therefore writing £ ¢ >0, <7 ; so that
the prefixed mark / comes to be the characteristic of a definite operation,
which may be said to be the operation of TARING THE ANGLE of any pro-
posed quaternion ¢; this view agrees with our earlier definitions (8§ xtv.,

. T
xxtv.) respecting powers of vectors, and gives £ p = 7 that the angle
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of a vector is a right angle ; the angle of a positive scalar is zero, and the
angle of a negative scalar is two right angles ; with the single ezception of
powers of negatives (for which powers, as well as for their bases, the azes
ure indeterminate), the same definition assigns a determinate quaternion
as the value of the £* power of any proposed quaternion g ; and the equa-
tion qugt=gu+t i3 satisfied, each member representing a quaternion, of
which the versor has the effect of turning a line perpendicular to the axis
of ¢ through an amount of rotation represented by (x+¢) 2 ¢, . .
Articles 148 to 150 ; Pages 163 to 166.

§ xxxm1. On the other hand, although the RoTATION produced by the operation
of the power gt is now correctly and definitely expressed by the product
tx [/ q, yet because this product is not generally confined between the
limits 0 and =, we cannot now consider it as being generally equal to the
anyle of the power, because we have agreed (in § xxx11.) to confine the
ANGLE of every quaternion, and therefore of the power g among the rest,
within those limits; thus with the present DEFINITE SIGNIFICATION of
the mark /, we must mot write generally £ (¢?)=t¢x £ g, but rather
£ (g) =2nm -+t L g, the axis of the power being in the same direction as
the axis Ax. q of the base, or else in the opposite direction, according as
it becomes necessary to take the upper or the lower sign ; the square root,
g4, of a (non-scalar) quaternion is acute-angled, and so are the cube-root,
g}, &c., while the axes of these roots coincide with the axis of their com-
mon power ; but the square g2 of an obtuse-angled quaternion ¢ has its
angle £ (q2) equal to the double of the supplement of the obtuse angle / g,
and has its axis in the direction opposite to that of the axis Ax.q; with
this definite view of powers and roots, although ¢hree distinct quaternions
may have one common cube, yet only one of them is (by eminence) the
cube-root of that cube ; examples: in like manner the symbol (g?)% de-
notes now definitely + ¢, or — ¢, according as the angle of ¢ is acute or
obtuse ; (p?)# denotes a vector, with a length = Tp, but with an indeter-
minate direction, because p? is a negative scalar ; we must nof now write
generally (gf)»= g, but may establish this modified formula, (¢*)* =
(Ax.g)ta, get, . . . . . . . Articles 151 to 161; Pages 166 to 174.

§ xxx1v. Reciprocals and conjugates of quaternions (compare §§ xx1v., xxx.) :

T (g =(Tg)'=Tg", U(g-})=(Ug)'=Uq"};
1(gY)=Lg, Ax.(g 1)=—-Ax.q; Ug-1=KUg=reversor;
L KUg=,Uq, Ax.KUqg=-Ax.Uq;
LtKq=17q, Ax . Kg=—Ax.q, TKg=Tq;

the reciprocal and conjugate of ¢ may be thus expressed,
q 1=Tq-1.KUq, Kg=Tq.Uq"1;

in general ¢Kg=Tq? so that the product of any two conjugute
quaternions is a positive scalar, namely, the square of their common

tensor; Tq=(qKq)}, Ug=1+ (g + Kq)}, according as £ ¢ S g; exam-



XX CONTENTS. -

ples; when ¢ is a vector = p, so that / ¢= g, then K¢ =— g (compare

§ xxm1.) ; and although (g <+ Kg)# is in this case an indeterminate vec-
tor-unit, yet we have still Ug? = g -+ Kgq, each member being =—1, . .
Articles 162 to 165; Pages 175 to 178.

§ xxxv. More close examination of the cAsE oF INDETERMINATION, mentioned
in several recent sections, when the base of a power becomes a negative
sealar; £ (=1)=; Ax.(-1) is indeterminate ; the symbol (-1)or
(=) denotes a versor, which has the effect of producing a given and defi-
Jinite amount of rotation = tm,but in a wholly arbitrary plane ; in parti-

cular, / (- 1)%:; , 50 that (—1)% or 4/ T 1 represents in this theory

(compare §§ X., XXIX., XXXII, XXXIIL.) a quadrantal versor with an arbi-
trary azis, and therefore also a VECTOR-UNIT with an INDETERMINATE
DIRECTION ; this perfectly REAL but partially INDETERMINATE INTERPRE-
TATION, of the symbol YV —1, is one of the chief PECULIARITIES of the
present calculus, so far as its connexion with geometry is concerned; ex-
amples of its use, in forming certain EQUATIONS oF Loct; if o be origin
of vectors, and p a point upon the unit-sphere, then the vector of that
point may be expressed as follows :

P—o=p=VY-1,

so that p? + 1=0 is a form for the equation of @ spheric surface ; this
form is extensively useful in researches of spherical geometry ; the ex-
pression p =@+ bV —1 represents the vector of a point upon amother
sphere, whose radius is 5, and the vector of whose centre is B3; the equa-
tion of this new sphere may also be thus written,

(p~B)+82=0, or thus, T (p~ ) =b;

the equation pa-1=V— 1, or (pa-1)2=—1, may be interpreted as repre-
senting a circular circumference, namely, the great circle in which the
plane through o, perpendicular to a, cuts the sphere which has the origin
o for its centre, and has its radius =Ta ; the indefinite plane of the same
circle may be represented by the equation U. pa-1=V — 1, and a paral-
lelplane by U. (p— ) a-1 =V —1; the equation pa-!= (- 1)} repre-
sents another circle, namely, the locus of the summits of all the equilate-
ral triangles which can be described upon the given base a; and the
equation U. pa-1=(—1)3 represents a sheet of a right cone, with its ver-
tex at the origin, and with the last-mentioned circle as its base, . . .
Articles 166 to 174 ; Pages 178 to 185.
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LECTURE V.
(Articles 175 to 250 ; Pages 186 to 240.)

ASSOCIATIVE PRINCIPLE FOR THE MULTIPLICATION OF THREE LINES IN
SPACE; QUATERNION VALUES OF THEIR TERNARY PRODUCTS, Bay, AND
FOURTH PROPORTIONALS, SBa lq; VALUES OF ik, kji; GENERAL CON-
STRUCTION FOR THE PRODUCT OF TWO VERSORS, BY A TRANSVECTOR
ARC UPON A SPHERE.

§ xxxvI. Proof that for any three coplanar vectors, a, B, v, the product 3.a"1y
represents the same fourth line § in their plane as the product Ba-1.y;
thus 8. a-1y = Ba-1.7, at least when « [|{ B, y (this last restriction is
afterwards shewn to be unnecessary); the proof is given for the three
cases, 1st, when the product a~!y is a vector; 2nd, when it is a scalar;
and 3rd, when it is a quaternion ; in treating these cases, we avail our-
selves of the formule, a-!.ae-l=¢"l, ye.el=y, In.n"10=120,
which are indeed included in the general associative principle of multipli-
cation (stated by anticipation in § xx1.), but can be separately and more
easily proved ; in general, by the conceptions of reciprocal and product,
it can easily be shewn that for any two quaternions ¢ and r, we have, as
in algebra, the identities, r-1.7¢ =g, rg. ¢ 1=r; another general for-
mula for the multiplication of any two quaternions is pA-1. Ak 1= pr-1,

Articles 175 to 182 ; Pages 186 to 192,

§ xxxviL. Negatives of quaternions,

T(-q)=Tq, L(~q)=n—Lg=m~LKg, Ax.{-g)=—Ax.g=Ax.Kg;
the axes of the negative and conjugate coincide, but their angles are sup-
plementary ; :

T(—Kg)=Tq, L(-Kg)=m~Lg Ax.(-Kg)=Ax.q;

the negative of the conjugate has the effect of turning the line on which it
operates, round the same axis as the original quaternion, but through a
supplementary angle; (these results are seen at a later stage, to admit of
being connected with the form Tq (cos + Vv -1 sin) / g, to which every
quaternion ¢ may be reduced, but in which the V>1is regarded as re-
presenting a vector-unit, in the direction of Ax.q); KKg=¢, K2=1;
K (- ¢) =~ Kgq if this =+ ¢, then g must be a vector, and vice versd ;
the tensor and versor of a product or quotient of any two quaternions
are respectively the product or quotient of the tensors and versors,

T.rq="Tr.Tq, U.rq="TUr.Ug,
T(r+q)=Tr—+Tg, U(r=-¢q)=Ur<Ug;

this result is connected with the mutual independence of the two acls ot
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operations of tension and of version ; the conjugate and the reciprocal of
the product of any two quaternions are respectively equal to the product
of the conjugates, and to the product of the reciprocals, but taken in an
inverted order, K,rq=Kgq.Kr, (rq) l=g-1r-1; if 8=QBa-1, r=
yal. 3 (see § xxviL), then 8. ¢-1 7=K(-8).K(ya-1)= -K(yal.8)
=—Kd=20; the result of the foregoing section, that 3. aly=8a"1.y,
when a, 3, y are three coplanar vectors, is therefore confirmed in this new
Wayy e+« « . . . . . . . Articles 183 fo 193 Pages 192 to 198.

§ xxxvirr. The associative principle therefore holds for the multiplication of any
three coplanar vectors, such as the recent lines Y, @), and B, with a
partial validity of the commutative principle also; so that we may dis-
miss the point in the notation, and may write either 6=Qa-1y, or
d=ya-18; the line § may still be called (see § xxv1r.) the Fourth Pro-
portional to a, B3, v, or to a, v, 8; but it may also be said to be the
continued product of v, a7l B, or of B, a1, y; without introducing —1
as an exponent of the middle factor, if |11 A, %, we have the following
equation of coplanarity, pAx=kAp; each of the symbols here equated
denotes a line, coplanar with the lines & A, u, which fourth line in their
plane may at pleasure be called the fourth proportional to A-1, u, «, or to
A-Y, g, p, or the continued product of &, A, p, or of g, \, (A )-1=),
(@) '=¢; Bay=ao. Ba-ly; and because a®<0 (by § xun), the
continued product Bay of three coplanar vectors, v, a, (3, has the direc-
tion opposite to that of the Jourth proportional to the lines a, B, y; the
continued product (o —¢) (c—n ) (B —A4) of the three successive sides,
AB, BC, Ca, of any plane triangle anc, represents by its length the product
of the lengths of those three sides, and by its direction the tangent at A to
the segment ABC of the circumscribed cirele (contrast with this the cor-
responding result in § XXVIIL ); this construction of a continued product
appears to be peculiar to quaternions ; case where the three points a, B, ¢
are situated on one straight line ; if 4, B, ¢, D be the four successive cor-
ners of an uncrossed and inscribed quadr®ateral, the continued product
(0~¢c) (¢—B) (B~ A), of the three successive sides AB, BC, CD, is con-
structed in this caleulus by a line which has the direction of the fourth
side, DA or A —D; but the same product represents a line in the direction
opposite to that of the fourth side, if the quadrilateral be a crossed one;
these results also (which may again be contrasted with those of § XXVIUL)
appear to be peculiar to quaternions ; the formula,

U.(®-¢) (c-B) (B—4)=+TU(a-Dn),

expresses, in the present calculus, a property which belongs only to plane
and inscriptible quadrilaterals, . . . Articles 194 t0 200 ; Pages 198 to 203.

§ xxx1x. Interpretation of the fourth proportional Ba-1.y, or B a x v, for
the cases where the three lines afy are not coplanar, y not ||| a, B3, but
where a is perpendicular either to ¥ or to 3; for each of these two cases,
the associative property of multiplication holds, Ba~1. y=PB.a1y,and
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the point may therefore be omitted; but the symbol Ba-1y does not now
represent any line but @ quaternion; the symbol Bay denotes another
quaternion, which is still (as in the last section) =a?.Ba-1y; the ver-
sors of these two quaternions are megatives of each other, U. Bay =~
U.Ba-1y; for any multiplication of any number of quaternions, the
tensor of the product is equal to the product of the temsors (compare
§ xxxvir), TII=HT; in the case where the three lines afy compose a
rectangular system, the fourth proportional Ba-1y degenerates from a
quaternion to a scalar, which is a negative or a positive number, according
as the rotation round a from (3 to y is of a positive or a negative charac-
ter; on the contrary, the continued product Bay is positive in the first of
these two cases, and negative in the second ; thus Bay =— yaf=+T8.
Ta.Ty, if 81 a, y 2 a, yL 3, the upper sign holding when the ro-
tation round y from a to 3 is positive; if DA, DB, DC be three co-initial
edges of a right solid, then

(c—p) (8—p) (4 - D) =+ volume of sclid,
according as the rotation round the edge pa from pB towards pe is di-

rected to the right hand or to the left ; examples from the unit-cube, & ~= 7
wi=—1, hji=+1,ik=—1, .

§ xr. More general cases, where a, 3, v are neither coplanar, nor rectangular;

§ xu1,

each of the two symbols, Ba-1.y, B.a"1 ¥, represents a determined
quaternion, but it remains to prove (§§ xLir., xrnr.) that these two qua-
ternions are equal; it is sufficient for this purpose to establish the equality
of their versors, and therefore the lines a, B, y may be supposed to be
three unit-vectors, 0A, 0B, 0C, terminating at three given points A, B, ¢
on the surface of the unit-sphere (§ xxxv.); the quaternion quotient Ba-1
becomes then a versor, with A0B for its representative biradial (§ xvur);
and the great-circle are, AB, which subtends the angle AoB, may be said
to be the REPRESENTATIVE ARC of the same quaternion or versor, Ba-1;
it is proposed to construct the representative arc of the quaternion Ba-1. 7

XXxm

. . Articles 201 to 210 ; Pages 203 to 208.

Articles 211 to 216 ; Pages 208 to 212.

Equality of any two versors corresponds to equality of their represen-
tative ares, such ARCUAL EQUALITY being defined to include sameness of
direction on the spheric surface, of the VECTOR ARCS compared, so that
EQUAL ARCS are always supposed to be portions of one common great cir-
cle ; but an arc may be conceived to slide or turn, in its own plane (com-
pare § xx.), or on the great circle to which it belongs, without any change
of value ; constructions for multiplication and division of versors, by pro-
cesses which may be called addition and subtraction of their representa-
tive ares ; if any multiplicand versor ¢, and any multiplier versor r, be
represented by fwo successive sides KL, Ly, of a spherical triangle xLM,

the product versor rq will be represented by the base KM of the same tri-
angle; thus versor, proversor, and transversor (see § 1x.), are represented
by what may be called an arcual vector, an arcual provector, and an ar-

cual transvector respectively (compare First Lecture); we may write the

formula ~ LM+ ~ KL=~ KM, and the ARCUAL SUM of two successive
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sides of any spherical triangle, regarded as two successive vector arcs, may
in this sense be said to be EQUAL TO THE BASE (compare §§ 1v., v.); such
ADDITION (of vector arcs) corresponds to, and represents, a composition of
two successive versions (§ 1x.), or plane rotations of a line (the radius) ;
the sum of the three successive sides of a spherical triangle, or generally
the sum of all the successive sides of any spherical polygon, may be said
to be a null are, or to be equal to zero, ~ MK+ ~ LM+ ~KL=10; to go
on the surface of the sphere successively from x to 1, from L to M, and from
M to K again, produces no final change of position; SUBTRACTION of vector
arcs, corresponding to division of versors, i3 very easily effected, on the
same general plan of construction, and represents (compare again § 1x.)
a decomposition of a given version into two others, of which the first in
order is given, namely, the one represented by the subtrakend arc; in
short, for arcs as for lines, the relations of §1v., between vector, provector,
and transvector, hold good in this manner of speaking ; the provector are
is regarded as the remainder, in the arcual subtraction of vector from
transvector ; addition of ARCS is NOT @& COMMUTATIVE operation; for if
two ares KK, MM bisect each other in 1, we shall have

X KL 4 ~ LM = ~ LK + ~ ML= ~ MK,
and this arcual sum ~ MK is indeed equally long with the arc ~ KM,
which was found to be = ~ LM + ~ &1, but it is part of a different great
circle, and therefore these two sums are not arcually equal to each other,
in the sense of the present section ; this result answers to and illustrates the
general non-commutativeness of the operation of multiplication of versors,
whereby gris not generally =rq (§§ x., X1., xX1X. &¢.); it is necessary to
distinguish in writing between two such symbols as ~'+ ~ and —~ + ~';
the rule adopted in this calculus is to write the symbol of the addend are,
like that of the multiplier quaternion, and generally the SYMBOL OF THE
OPERATOR, fo the LEFT of the SYMBOL OF THE OPERAND, that is, in this
case, to the left of the symbol of the arc to which another is to be added;
thus we still write “ pravector plus vector,” and not, generally, vector plus
provector ; several other general properties of multiplication and division
of quaternions may be illustrated by the same method of arcual construc-
tion, . . . . . . . . . . . Articles 217 to 222; Pages 212 to 217.

§ xvr1r. Application of the method of the last section to the problem proposed
at the end of § xr., namely, to the construction of the representa-
tive are of the fourth proportional Sa- 1.y to three unit-vectors, a, 3, v,
or 0A, 0B, oc, which are not rectangular, ror in one common plane
(§ x1.), but which shall at first be supposed to make acute angles with
each other, so that the sides of the triangle ABc shall eack be less than a
quadrant ; the vector arc representing y is here a quadrant KL with ¢ for
its positive pole ; the provector arc representing the other factor Ba-1, is
the arc AB, or an equal arc LM ; the transvector arc KM, which represents
the required fourth proportional, under the form of the product Ba-1.y,
is found to have its pole at a new point D, which is a corner of a new cir-
cumseribed spherical triangle DEF, whose sides EF, ¥FD, DE are respec-
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tively bisected by the three corners A, B, ¢ of the old or given triangle;
and the REPRESENTATIVE ANGLE, KDM, at this pole D, which corresponds
to the representative arc, xm, and may replace it, as representing the
fourth proportional to the three vectors a, 3, 7 is equal to the semisum of
the angles of the auxiliary triangle, DEF, or to the supplement of that
semisum, according as the rotation round a from 3 to y is positive or ne-
gative ; hence the two quaternions Ba-1. y and vya-1. 3 have one common
axis, namely, the radius on, but have their angles supplementary ; but
these were the conditions assigned in § xxxVvIL, as necessary and suffi-
cient, in order that one quaternion should be the tive of the conjug

o

of the other; we have therefore, as in the last cited section,

Bat.y=-K(ya-1.8)=B.a"1y,

and the associative principle is again found to hold good for the three
vectors y, a-1, 3, although these three lines are not now coplanar (as
they were in §§ xxxv1.,, XxxvIL), and do not form a wholly or even par-
tially rectangular system (as they did in § xxxix.), .

£

XXv

Articles 223 to 235 ; Pages 217 to 228.

§ xuur Other proof of the same theorem, by means of an analogous construe-

tion for the product 3. a-1y; the case where B L a may be treated as a
limit of a case lately discussed, the arc A% becoming a quadrant, and the
triangle DEF becoming a June ; case where the arc s is greater than a
quadrant ; value of Ba-1. y, when ¥Y'=—7, and when the sides of the
new triangle ABC' are each greater than a quadrant ; we have

Bal.y'=-K(yal.B)=B.a 1y

in EVERY case, the ASSOCIATIVE PRINCIPLE of multiplication holds good
Jor any system of THREE VECTORS, and we may ALWAYS write in this
caleulus (as inalgebra) the formule,

B.aly=Bal.y=Pa-1y; 8. ay=0a.y=Bay;
to establish this result has been the main object of the present Lecture, .

Articles 236 to 240; Pages 228 to 233.

§ xr1v. Partial indetermination of the constructed triangle DEF, when the given

§ xLv.

triangle ABcC is triquadrantal ; the point D may take infinitely many po-
sitions on the sphere, but the semisum of the angles at v, E, r is always
equal to two right angles ; the scalar character of the Jourth proportional
to three rectangular vectors, which had been established in § xxx1x., may
in this way be proved anew, as a particular or limiting case of a much
more general result ; when a scalar is treated as a quaternion, its axis is
indeterminate; the rule of § xxx1x. for determining the sign of the scalar

is also reproduced, . . . . . . Articles 241 to 244 ; Pages 233 to 237.

Mustrations of the equations (of § XXXIX.), hfi=+1, ijk=—1; the
former may be interpreted as expressing that if a line A be suitably chosen,
namely, 50 as to be perpendicular to the (meridional) plane of % and i,
and be then operated on successively by i, by j, and by 4, considered as

d
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three quadrantal and mutually rectangular versors (§ X.), the final direc-
tion of this revolving line X will be the same as the initial direction ; the
latter equation ({j2 =— 1) may in like manner be interpreted as expres-
sing that if the same (westward or eastward) line A be operated on suc-
cessively by &, by j, and by i, it will take at last that (eastward or west-
ward) direction which is opposite to the initial direction ; and because
each of the vector-units %, j, %, when‘thus regarded as a quadrantal versor,
is evidently (see again § X.) a semi-inversor, we have in this way ex-
tremely SIMPLE INTERPRETATIONS for ALL THE PARTS OF THE FORMULA,

R=p=k=ijk=-1;

which continued equation may be considered as including within itself all
the laws of the COMBINATION OF THE SYMBOLS, 1, j, k ; and therefore
ultimately, on the symbolic side, the WHOLE THEORY OF QUATERNIONS,
because these are all reducible to expressions of the quadrinomial form,

g=w+ir+jythz, . . o . ..
Articles 245 to 250 ; Pages 237 to 240.

LECTURE VL
(Articles 251 to 393; Pages 241 to 380.)

GENERAL ASSOCIATIVE PROPERTY OF THE MULTIPLICATION OF QUATER-~
NIONS; REPRESENTATION OF THE PRODUCT OF TWO VERSORS BY THE
EXTERNAL VERTICAL ANGLE OF A SPHERICAL TRIANGLE; CONNEXION
OF TERNARY PRODUCTS OF QUATERNIONS WITH SPHERICAL CONICS;
CONTINUED PRODUCTS OF THE SIDES OF PLANE OR GAUCHE POLYGONS
INSCRIBED IN A CIRCLE OR IN A SPHERE; COMPOSITION OF CONICAL
ROTATIONS ; THEORY OF SPHERICAL POLYGONS OF MULTIPLICATION,
WITH THEIR SYSTEMS OF INSCRIBED CONICS, AND RELATIONS OF FOCAL
ENCHAINMENT.

§ xr.vi. Postponement of the proof of the distributive principle of the multiplica-

tion of quaternions; additional illustrations of the general theory of the

fourth proportional to three vectors, which was assigned in the foregoing

Lecture; case of coplanarity, regarded as a limit, . T,
Articles 251 to 257 ; Pages 241 to 247.

§ xuvir. The product of the square roots of the successive quotients of the vectors
3, Z, 1, of the corners of a spherical triangle DEF, is a quaternion,

g = (8=} (e£-1)1 (L3713,
of which the angle is the semi-excess of the triangle,
Lq=3(D+E+ F-m);

and the axis of the same guaternion product has the direction of + d, that
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is of o or of Do, according as the rotation round & from Z towards ¢, or
that round D from F towards E, is positive or negative, . . . . . .
Articles 258 to 263 ; Pages 247 to 252.

§ xLviL General construction for the multiplication of any two quaternions, by a
process analogous to addition of their REPRESENTATIVE ANGLES (compare
§§ X1, xL1L) ; if these be made the base angles of a spherical triangle,
and if the rotation round the vertex of this triangle, from the base
angle which represents the multiplier, towards the base angle which
represents the multiplicand, be positive, then the rrobucCT is repre-
sented by the EXTERNAL VERTICAL ANGLE; if we agree to call the ex-
ternal vertical angle of a spherical triangle generally the SPIERICAL sUM
OF THE TWO BASE ANGLES, when the positions of the vertices of these seve-
ral angles on the sphere are taken into account, and when the addend
angle answers to the multiplier quaternion, according to the rule of rota-
tion above given, we may enunciate 2 GENERAL RULE Jor the multiplica-
tion of any two quaternions, as follows: “ the tensor of the product is the
arithmetical product of the tensors (§ xxxVIL), and the angle of the pro-
duct is the spherical sum of the angles of the factors ;” this new sort of
SPHERICAL ADDITION OF ANGLES is connected with a certain composition
of rotations of ares ; such addition of angles (like that of arcs in § XL1)
is a non-commutative operation ; this result furnishes a new illustration of
the non-commutative character of the general multiplication of quater-
nions; the rotation round the axis or round the pole of the multiplier,
JSrom that of the multiplicand, fowards that of the product (compare

§§ x1, xv., XxV1), i3 always positive, , Articles 264 to 272 ; Pages 252 to 261.

§ xr1x. Corollaries from the general construction for multiplication assigned in
the foregoing section (XLvIiL); interpretations by it of the symbols a8,
Ba-1, Ba-13, agreeing with the results previously obtained respecting
the product, quotient, and third proportional of any two vectors ; inter-
pretations of 33a#, Bia3, B3a3, as denoting quaternions (compare §§ xx1x.,
XXX.); analogous interpretation of the more general symbol g = 3¢ al-¢,
when a and 3 are supposed to be unit-vectors ; the unit axis Ax. ¢ =op,
of this quaternion g, describes by its extremity » a curve APB upon the
unit-sphere, which curve is the locus of the vertex p of a spherical triangle
ArB, whose base-angles are complementary ; this curve is a spherical
conic ; for any spherical triangle, with a, B, y for the unit vectors of its
corners A, B, ¢, and with z, 7, z for the (generally fractional) numbers
of right angles at those corners, the rotation round ¢ from © to A being
supposed to be also posi‘tive, we have the three equations

Y= —1; ary i =—1; Braryr=—1;
any one of which will be found to include, when interpreted and developed,
by the principles of the present calculus, the whole doctrine of spherical
trigonometry ; with the phraseology recently proposed, the SPHERICAL sum
of the THREE ANGLES of any spherical triangle, if taken in a suitable order
of succession, is always equal to Two RIGHT ANGLES,

Articles 275 to 280 ; Pages 261 to 268.
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§ L. Interpretation of the symbol rgr-1, where g and r are any two quaternions;
this symbol denotes a new quaternion, with the same tensor, and same
magnitude of angle, as the original or operand quaternion, g,

T.rgr-3=Tq, L.rgr-1=/q;

but the axis of the new quaternion rgr-1is generally different from Ax.q,
and is formed or derived from this latter axis, by a cONICAL and positive
ROTATION round the axis Ax .7, of the other given quaternion, r, through
DOUBLE the ANGLE of that quaternion ; analogous interpretations of ¢-1rg,
girq~t; the latter symbol denotes a quaternion formed from », by making
its axis revolve conically round the axis of ¢, through a rotation expressed
by the product 2¢ x £ ¢; by employing arcs instead of angles, we may in-
terpret the symbol ¢ ( ) g-1, in which ¢ may be said to be the ope-
rating quaternion,’as denoting the operation of causing the arc which
represents the operand quaternion, and whose symbol is supposed to be
inserted within the parentheses, to move along the DOUBLED ARC of the
operator, without any change of either length or inclination (like the equa-
tor on the ecliptic in precession) ; if £ be still a scalar exponent, (¢rq-1)t =
grtg-1; the symbol gpg-1 denotes a vector formed from the vector p, and
the analogous symbol ¢Bg-! may be used to denote a body derived from
the body B, by a conical and finite rotation, through 2 / ¢ round Ax. ¢;
to express that this body has afterwards been made to revolve through
2 £ r round Ax . r, we may employ the following symbol for the new po-
sition of the body, or system of vectors, r. ¢gBg-1. r-1; and so on for any
number of successive and finite rotations, round any azes drawn from or
through one common origin 0 ; interpretations of the symbols ¢ (a + p) ¢-1,
g (@ + B) ¢-1; expression for rotation of a body round an axis which does
not pass through the origin of vectors; symbols ¢4 ( )¢ % y( v~ 1;
the former represents a rotation through the angle itself of ¢ ; the latter
represents a REFLEXION with respect to the line y, or a conical rotation
of the operand (whether vector or body), round y as an axis, through two
right angles ; the formula 8. a-l¢a.B-1=Ba"1.¢. a3-1, expresses that
two successive reflexions, with respect to any two diverging lines a and 83,
are equivalent upon the whole to a single conicel rotation, round an axis
perpendicular to both those lines, through twice the angle between them,
Articles 281 to 292 ; Pages 268 to 277.

§ 11. The general demonstration of the associative property of the multiplication
of any three quaternions (mentioned by anticipation in § xx1.), may be
made to depend on the corresponding principle for the multiplication of
any three versors, q, v, s ; when these versors are represented by arecs
(§ xL.), we may propose to prove that a certain ercual equation (§ xv1.)
is a consequence of five other equations of the same sort; first proof by
spherical conics ; the, two partial or binary products rq and sr are re-
presented by portions of the two eyclic ares of a conic circumscribed about
« quadrilateral, whose successive sides, or portions of them, represent the
three proposed factors, q, 7, s, and their ternary product, srq ; other and
more elementary geometrical proof of the associative principle, not intro
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ducing the conception of a cone ; second proof by spherical conies ; certain
angles at the corners of a new spherical quadrilateral ABCD represent the
three factors and their total product, while certain other angles at the foci
EF of an inscribed conic represent the two binary products; three equa-
tions between spherical angles are thus shewn to be consequences of three
other equations of the same sort, in such a way as to establish the pro-
perty above proposed for investigation; it is therefore proved geo-
metrically, in several different ways, that the ASSOCIATIVE PRINCIPLE
OF MULTIPLICATION holds good for any three versors, and thence for ANY
THREE QUATERNIONS, sr.g=s8.rq=¢rg; (in the Fifth Lecture this
theorem was established only for the multiplication of any three vectors) ;
extension to the case of any number of factors ; arcual addition (§ xLL),
and angular summation (§ XLVIIL), are also associative operations,
although they have been seen to be not generally commutative, . . . .

Xxix

Articles 293 to 304 ; Pages 277 to 290.

§ Li1. Other forms of the associative principle ; if the first, third, and fifth sides of a

§ Lun

spherical hexagon be respectively and arcually equal to the three successive
sides of a spherical friangle, then the second, fourth, and sixth sides of the
same hexagon will be respectively and arcually equal to the three succes-
sive sides of another triangle ; or if the arcual sum of three alternate sides
of a hexagon (fifth plus third plus first) be equal to zero (see § xrLL),
then the corresponding sum of the three other alternate sides (sixth plus
fourth plus second) will Zikewise vanish ; symbolical transformations of the
same principle ; if ad-1=y¢-3, then Z6-1.aB~1=Ze-1. yB-1; if de-1=
€X-1.0n-1, then dk-1=gn-1. Oh-1; if (0. yf3) a={, then (aB.y0) ¢
=Z; remarks on the necessity that existed for demonstrating the general
associative principle of multiplication, notwithstanding that to a certain
extent the principle had been previously defined to hold good; we may be
said to have virtually used the DEFINITIONAL ASSOCIATIVE FORMULA,
rq.a=r.qa, for the cAsE where «, qa, and r. ga were LINES, in order
to INTERPRET THE PRODUCT, 7, of any Two geometrical factors, or qua-
ternions ; but the very fact of the perfect definiteness (§ xx1.) of this én-
terpretation of a binary product made it necessary that we should not as-
sume but prove the corresponding formula respecting a GENERAL TERNARY

PRODUCT, . « . « . - . . . Articles 305 to 316; Pages 290 to 303.

If the continued product of any odd number of vectors be a line, it is
equal to the product of the same vectors, taken in an inverted order ; and
reciprocally, if the continued product of an odd number of vectors be not
a line, it will not remain unaltered by such inversion of the order of the
factors ; on the other hand, if the number of vectors thus multiplied be
even, the product will be changed to its own negative, if it be a line, and
not otherwise, by such inversion; if the continued product of an even
number of vectors be a scalar, the inversion produces no change; and re-
ciprocally if the continued product of an even number of vectors receive
no change by inversion of order, that product must be a scalar ; conjugates
and reciprocals of products of any number of vectors or quaternions, arc
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the products of the conjugates or reciprocals of the factors, taken in an in-
verted order; in § xxxviL this was only established for the case of two
factors ; the formule Ka = —a, K. Ba =+ a3 (see §§ xx11L, xv.), may
now be extended as follows, K. yBa =— afy, K. dyBa =+ afy9, &e,
the signs of the results being alternately — and +; the construction of
§ xxxvur, for the continued product of the three sides of an inscribed
triangle, may now be extended so as to shew that the product of the suc-
cessive sides of a polygon inscribed in a circle i8 equal either to a scalar,
or to a tangential vector, at the first corner of the polygon, according as
the number of the sides iy even or odd ; thus the continued product of the
JSour successive sides of an inscribed quadrilateral ABCD is a scalar,
U.(a-p)(p—c) (c—B) (B—a)=F1,

and the upper or lower sign is to be taken, according as the quadrilateral
is an uncrossed or a crossed one (compare §§ xxvir., xxxviL); this
symbolical result appears to be peculiar to the present calculus, and con-
tains a characteristic property of the circle, corresponding to the known
and elementary relations between angles in alternate segments, or in the
same segment ; the versor of any product of quaternions is equal to the
product of the versors, UII=TU, . Articles 317 to 322; Pages 303 to 309.

§ Liv, To interpret the continued product of the four sides of 2 GAUCHE QUADRI-
LATERAL, ABCD, We may conceive it to be inscribed in a sphere ; the
product is a quaternion, of which the azis has the direction of the out-
ward or inward normal to the sphere at the first corner A, according to
the character of a certain rotation ; the angle of the same quaternion pro-
duct is the angle of the LUNULE, ABCDA, or the angle between the two
small-circle ares, ARC, ADC; this includes as a limit the case of a qua-
drilateral in a circle ; an analogous construction holds for the continued
product of the sides of a GAUCHE HEXAGON, octagon, or other polygon
with an ever number of sides, inscribed in a sphere ; the product is still a
quaternion, of which the azis is normal, or the plane tangential, to the
sphere, at the first corner of the polygon ; construction for the continued
product of the sides of a GAUCHE PENTAGOX, heptagon, &c., inscribed in a
sphere ; this product is a tamgential vector, drawn at the first corner;
conversely, if the continued product of the sides of a gauche pentagon
ABCDE be a line, when this product is constructed according to the rules of
the present calculus, the pentagon is inscriptible in a sphere ; hence is de-
rived the following EQUATION OF HOMOSPHAERICISM, or condition for
five points A, B, ¢, D, E, being situated upon one common spheric surface,

AB.BC.CD.DE.EA=EA.DE.CD.BC.AB;

this vector character of the product of the sides of a pentagon in a sphere
includes, as a limit, the scalar character of the product of the sides of a
quadriluterel in a circle (§ L1, which latter relation may be expressed
by the following EQUATION OF CONCIRCULARITY,
AB.BC.CD.DA=DA.CD.BC.AD, .

Articles 823 to 328 ; Pages 509 to 315.



CONTENTS. xxxi

§ Lv. One form of the equation of the tangent plane at A to the sphere ABcD is
the following :

AB.BC.CD.DA.AP=AP.DA.CD.BC.AB;

the two equations,

AB.BC.CD.DE.EA = EA.DE. CD.BC. AB,
and

AB.BC.CD.DA.AE = AE.DA.CD.BC. AB,

must therefore be incompatible, except under the supposition that either
the point E coincides with a, or that the four points A, B, ¢, D are copla-
nar; in fact when the distributive principle shall have been established
(in § Lxxv.), it will become clear that the addition of these two equations
gives
AB.BC.CD X AE.EA = AE.EA X CD.BC. AB,
and therefore that either
AE2=0, AE=0, E=A4,
or else
AB.BC.CD = CD.BC. AB,

which are respectively (compare § xxxvir) conditions of coincidence and
coplanarity ; problem of inscription in a given sphere, of a gauche quadrilate-
ral Arcp, whose four successive sides AB, . .. DA shall be respectively parallel
to four given radii o1, oK, oL, om; problem of expressing an nt* radius,
OPy, O Py, of a given sphere, considered as a function of an initial radins
oF ot p, and of # other radi, ory, . .. 01, or ¢, . . . ty, to which the »
successive and rectilinear ckords PPy, .. . Pn_1 P, are required to be pa-
rallel ; if « and 3 be any two equally long and diverging lines, 04, oB,
and if y have either of the two opposite directions of the lines AB, BA con-
necting their extremities, then 8 =— yay-1; hence in the recent question,
p1=—upul, pa=—upisl, &e., and if we introduce the quaternion,
gn=ty . « . 2u, the solution of the problem will be expressed by the for-
mula p, = (-)*gupgs~1; the same expression will hold good, if we regard
the quaternion g, as the continued product

gn=(an= pn-1) (@n-1—pPn-2) . - . (a1 - p),

of the n first segments PAy, PlAg ... &c., of the n successive chords, on
which Ay, Ay, &c., are » points arbitrarily taken, but not supposed to be
situated upon the surface of the sphere ; relation to a conical rotation (see
§ 1.); EQUATION OF, CLOSURE, p,=p; for an inscribed and even-sided
polygon, pg,=q.p, Ax.q, || p, with inclusion of the limiting case for
which the product ¢, is a scalar; for an odd-sided polygon, pg,=— g.p,
and the same product ¢, must reduce itself to a vector 4_p; these last
results agree with those of § Liv.; if, in a sphere, the five successive sides
of an inseribed gauche pentugon, ABCDE, be respectively parallel to the
five radii drawn to the five corners of a superscribed spherical pentagon,
IKLMN, then the fifth corner ¥ of the second pentagon is situated some-
where upon that great circle ¥R, of which a portion coincides with the
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arcual sum, ~ LM+ ~ 1K (see § xL1.) of the first and third sides of that
second pentagon ; this theorem involves and expresses a GRAPHIC PRO-
PERTY OF THE SPHERE, which is sufficient to characterize that surface,
and is logous to the well-k and el tary relation bet the
DIRECTIONS of the sides of a quadrilateral inscribed in a circle ; indeed
this graphic property of the circle can be derived as a Zimit from the lately
stated and graphic property of the sphere; theorem respecting a general
relation of an inscribed gauche polygon of 2z sides, to a certain other in-
scribed polygon of 4n + 1 sides; examples, . . . . . . . . . .

Articles 329 to 340; Pages 315 to 325.

§ LvL. Composition of conical rotations; the symbol srgB (srq)-1 denotes the
position into which the body B is brought, by three successive and finite
rotations, round the three successive axes, Ax.q, Ax.r, Ax.,s, all
drawn from the origin o, through the three successive angles denoted by
2.q, 2.7 2Ls; but the same final position of the body, or of the sys-
tem of vectors operated on (compare § 1.), can also be attained by a sin-
gle resultant rotation, round Ax . srg, through 2 /.srq; in like manner
any number of successive and conical rotations of a line p, or body B,
round axes passing through one common point 0, can be compounded into
one, by multiplying together, in the given order, the quaternions which
represent, by their axes and angles, the halves of the given rotations, and
then taking the axis and the doubled angle of the quaternion product ;
examples: the identity S-—~a=8x a1 of § xxIv., since it gives
(B=a) p(a=+PB)=0.a'pa. -1, maybeinterpreted (see again §1..)
a8 expressing that two successive reflexions of an arbitrary line p, with
respect to two given lines a, (3, are jointly equivalent to the double of the
conical rotation represented by the arc Am; the identity, y--a=
(y + B) x (8 ~- a), of § vIL, conducts in like manner to the conclusion
that a conical rotation thus represented by the double of an arc AB, if fol-
lowed by another conical rotation represented by the double of a successive
arc BC, produces on the whole the same effect as that third and resultant
conical rotation, which is on the same plan represented by the double of
the arc Ac; that is, by THE DOUBLE OF THE ARCUAL SUM (see § XLL) of
the HALVES of the arcs which represent the two component rotations ;
three successive and conical rotations, represented by the doubles of the
three successive sides of any spherical triangle, produce on the whole no
effect ; geometrical illustrations and confirmations of these results; exten-
sion to spherical polygons, and to any number of successive rotations, re-

S presented by the doubles of the sides; rotations may be represented also

/ by spherical angles (instead of arcs); the equation y2@¥ar=—1, of
/ =0y ™ / § xLIX., shews that if the double of the rotation represet’i{ed by the angle
l/ ﬁ o= CAB be followed by the double of the rotation represented by the angle
ABC, the result will be the double of the rotation represented by the angle

ACB, or the opposite of the double of the rotation representcd by Bca ; two

successive reflexions, with respect to two rectangular lines, are equivalent

to a single reflexion with respect to a line perpendicular to both ; if a body
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be made to revolue through any number of successive rotations, represented
as to their axes and amplitudes by the doubles of the angles of any sphe-
rical polygon, the body will be thereby brought back to its original posi-
tion, . . . . . . . . . . . Articles 341 to 849 ; Pages 325 to 334.

§ Lvir. The system of the two successive rotations represented by the two succes-
sive sides DF, FE, of any spherical triangle, is equivalent to a single rota-
tion, represented by the double of the arc which is the common bisector of
those two sides; the arcual sum § ~ED + } ~ FE + £ ~ DF, of the halves
of the three successive sides of any such triangle DEF, is an arc which has
the first corner D of that triangle for its positive or negative pole, accord-
ing as the rotation round D from F towards E is positive or negative; the
length of the same sum-arc represents the spherical semi-excess, or semi-
area, of the triangle; extension to any spherical polygon, and even to
ANY CLOSED FIGURE ON A SPHERE ; case of negative areas; successive
rotations, represented by the successive sides of any spherical triangle or
polygon (and not now by the doubled sides), or even by the successive
elements of any closed perimeter on a sphere, compound themselves into a
single resultant rotation round the first corner or point of the figure, or
round the radius drawn to it, through an angle which is numerically equal
to the TOTAL AREA of the figure (the case of negative elements of area
being attended to when necessary) ; if a body, or system of vectors, be
made to revolve in succession round any number of different axes, all pass-
ing through one fixed point, so as first to bring a moveable line a into
coincidence with a fixed line 8, by a rotation round an axis perpendicular
toboth; secondly, to bring the same moveable line o from the position 3
to another given position y, by revolving in a new plane ; and so on, till
after bringing it to coincide successively with any number of lines given
and fixed, and finally after turning from « to A, the line a is brought back
from X to its own original position; then the BODY will be brought, by
this succession of rotations, into the same final position as if it had re-
volved ROUND THE ORIGINAL POSITION of the moveable line (a), as an
axis, through an angle of finite rotation which has the same numerical
measure as the SPHERICAL OPENING of the PYRAMID (@, B, 9, - -1 X),
whose edges are the successive positions of the line ; in symbols, for the
case of five given lines, including the original position of «, if we form the
quaternion product,

_ (.1% [t 5%(75/3%
=\ I\3 )\ \B)\& )
and if the rotations round «, from 3 to y, from y to §, and from & to ¢ he
positive, then

Tg=1, Ax.9=a, L9=%(A+B+C+ D+ E-3x),

the addition of the five angles of the pentagon being performed in the
usual way (and not here by such spherical summation as was mentioned
in § xLvnr) ; extension to the product of the square roots of any number

€
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of successive quotients of vectors ; even if that number be infinite, this
product of square roots is still a definite quaternion, of which the angle
represents the semi-area of a closed figure on a sphere, while the azis of
this latter product is still the radius drawn to the first point of the figure ;
interpretation of the symbols,
g % %, ~AB+ ~BC+ ~CAj;
if (as in § x11L) the corners a, B, ¢ of one spherical triangle bisect respec-
tively the sides opposite to the corners p, E, F of another, and if a body be
made to revolve in succession through three rotations represented respec-
tively by 2 ~ CA, 2 ~BC, 2~ AB, or by the DOUBLES OF THE THREE
STIDES of the first triangle ABC, taken in an INVERTED ORDER, this body
will on the whole have revolved round the corner 1 of the second triangle,
as round a NEGATIVE POLE, through an angle which is numerically equi-
valent to the DOUBLED AREA of the same second triangle, DEF, . . .
Articles 350 to 857 ; Pages 334 to 343.

§ Lvii. New elementary proof of the associative property of multiplication of
three quaternions ; siz double eo-arcualities may be assumed to exist by
construction, and then the theorem is, that three arcual equations are con-
sequences of three others ; this corresponds to the second proof by spheri-
cal conics in § L1, which shewed that three equations between angles
were consequences of three others: if ¢, 7, s, £, be any four given quater-
nions, and u their total or quaternary product, u={tsrq, while v, w,
denote respectively their three binary products, rq, sr, ts, and y, z denote
their o ternary products, srq, tar ; if also these ten factors and products
@8t U Y, W5 Y2 be represented by ten angles at ten points
A, B, G, D, E, F, G, H, T, K upon the unit-sphere, then since y = sv, 2 =tw,
u=ty, we can, by siz triangles, answering to siz binary multiplications,
construct successively the six points ¥, 6, H, I, K, and E, the four points
A, B, ¢, D being here regarded as given, and also certain angles at them ;
in this process of construction, / r i3 represented by fwo different angles
at B, giving one equt{tion of condition ; [ s is represented by three dif-
ferent angles at c, giving fwo other such equations; /¢ gives two equa-
tions; /v, L w, and Ly give each one other equation : but the angles of
q, 1,2, u, are each only once employed in the construction ; on the whole
then there are EIGHT EQUATIONS OF CONSTRUCTION, required for the cor-
rectness of the figure; butthe associative principle gives four other binary
products, y=wq, =27, w=Iv U=2q, and four other triangles ; there
are thus TEN TRIANGLES in the completed figure, representing ten binary
madtiplications (on the plan of § xrvIIL), and it is found that eack of the
ten points A . . . X is a common corner of three of those ten triangles; at -
each point three angles are equal, and there ‘are thus as many as TWENTY
EQUATIONS between angles, including the eight equations of construction;
the remaining twelve equations are therefore consequences of thase eight, in
virtue of the associative principle, .  Articles 358 to 8G4; Pages 343 to 350-
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§ Lix. In general, if there be any number, n, of quaternions (or versors), g1, .. « g,
represented by angles at » points, Q;, . . . Q, on a sphere, and if the fotal
product g =g, qu-1 - - . 2 g1 be represented at another point @, we may
conceive these points to be the successive corners of a certain spherical po-
lygon of p =n + 1 sides, which may be called a POLYGON OF MULTIPLICA-
TION ; this conception includes the cases of the triangle of binary multipli-
cation in § xLviL, the second quadrilateral of ternary multiplica-
tion, ABCD, in § L1, and the pentagon of quaternary multiplication,
ABCDE, in § LviL; in general we may form n— 1 binary products,
r1 = q2q1, &cC., n— 2 ternary products, s, = gsq2q1, &c., and so on ; the
number of these intermediate or partial products, or of their represen-
tative points on the sphere, is 1 (n + 1) (» — 2) ; along with the p former
points, they make up altogether } (n+ 1) n points in the completed
Jigure ; each point may be supposed to have two spherical co-ordinates,
but between these (» + 1) n co-ordinates there exist generally # (n — 2)
relations, or equations of condition, because they are all determined by the
% VErsors qi...gm and therefore by 8n numbers (compare § xvir);
other proof of the general existence of n (= — 2) equations of condition, or
equations between certain angles in the figure; each of the } (z+ 1) »
points of the figure is a common corner of n — 1 different triangles, re-
specting so many binary multiplications ; at each point, » — 1 angles are
equal, and thus there are in all }n (n+ 1) (% — 2) equations between an-
gles.; of these, n (n — 2) are true by construction (as above), and the re-
maining angular equations are true by the associative principle ; there
are therefore j» (n — 1) (n — 2) EQUATIONS OF ASSOCIATION, which are
consequences of n(n—2) EQUATIONS OF CONSTRUCTION; and the de-
pendent equations are more numerous than those on which they depend,
whenever the number n of the proposed factors exceeds three ; in the com-
plete construction of a polygon of multiplication, with p=n 4 1 corners,
and 4p (p — 3) inserted points (representing partial products), is involved
(by the associative principle) the construction of a number of auxiliary
spherical polygons of inferior degree, expressed by the formula
p(p-1)(p-2)..(p-p'+1)
1.2 . 38 .. I
auxiliary and inferior polygon; thisresult is not to be confounded with the
elementary tbeorem of combinations, expressed by the same formula, .

Articles 365 to 378 ; Pages 351 to 366.

, if p’'be the number of sides of the

§ Lx. The focal character, mentioned in § L1., of the points &, F which represent
the two binary products rq, sr, in any case of ternary multiplication, srq,
namely, that they are foei of a spherical conic inscribed in the quadrila-
teral ABCD, if A, B, ¢, D be the four points which represent the three fac-
tors, g, 7, s, and their total or ternary product, may be denoted by the for-
mula,

£F (..) ABCD,

which admits of various transformations; in the complete construction of
the p-sided polygon of multiplication, there arises a system of such conics,
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in number amounting to Jop (p—1) (p~2) (p— 8), and inscribed in
so many quadrilaterals ; their foci are the 1p (p — 8) inserted points (of
§ L1x.), which represent the partial products; these points may therefore
be called the FOCAL POINTS of the polygon of multiplication ; and if they
be conceived to be the corners of a certain other polygon or polygons,
there will exist, between these different polygons, a species of FOCAL EN-
CHAINMENT ; examples ; table of fiftcen focal relations, for the case of the
general hexagon of multiplication ; this hexagon is in this way connected
or enchained with a certain other hexagon, and also with a friangle on the
sphere, the nine corners of which auziliary hexagon and triangle are foci
of a system of fifteen spherical conics, inscribed in fifteen spherical qua-
drilaterals of the completed figure; geometrical and numerical illustra-
tions ; the general pentagon of multiplication ABCDE (of § LvuL) isin
an analogous way focally enchained with another pentugon FIGEH (or
with FGHIK), by a system of five conics, giving the five following focal
relations :
¥G (. .) ABCI; GH (. .) BODK;
HI (. .) CDEF; IK (. .) DEAG; KF (. .) BABH;

each conic has its foci at two corners of the second spherical pentagon,
and touches two sides of the first ; elementary illustration, taken from the
limiting case where the pentagons become regular and plane, . . . .

Articles 379 to 393 ; Pages 366 to 380.

LECTURE VIL

ADDITION AND SUBTRACTION OF QUATERNIONS; SEPARATION OF THE SCA-
LAR AND VECTOR PARTS; NOTATIONS S AND V; DISTRIBUTIVE PRIN-
CIPLE OF MULTIPLICATION OF QUATERNIONS; NEW PROOF OF THE AS-
SOCIATIVE PRINCIPLE ; GEOMETRICAL APPLICATIONS OF THESE PRIN-
CIPLES, INCLUDING SOME NEW GENERATIONS AND PROPERTIES OF THE
ELLIPSOID; NEW REPRESENTATIONS OF LOCI; CONNEXIONS OF QUA-
TERNIONS WITH CO-ORDINATES, DETERMINANTS, TRIGONOMETRY, LO-
GARITHMS, SERIES, LINEAR AND QUADRATIC EQUATIONS, DIFFEREN-
TIALS, AND CONTINGED FRACTIONS; INTRODUCTION OF THE BIQUATER-
NION.

§ vxr. Recapitulation, . . . . . . . Articles 394 to 400; Pages 381 to 386.
v

§ Lx11. Addition of a number to a line; interpretation of the symbol 1+ %; we
look out for some common operand, thatis, for some one line such as ¢, on
which the two proposed summands, 2 and 1, can both operate separately
as factors, in ways already considered, so as to produce two separate re-
sults or partial products, which shall themselves be or denote lines,
namely, in this case j and ¢; we then add these two lines (§§ v., XI1x.),
<0 as to form a new line (i + j) ; finally we divide the sum by the common
operand, and we tale the quotient (i + j) -+, obtained by this division,
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which quotient is in general (see §§ VI, XX.) a QUATERNION, as the alue
of the proposed sum,

T h=(li+ ki) mi= (i +j) =13

the effect of 1+ %, as a factor, is to change the side of a horizontal square
to that diagonal of the same square which is more advanced than it in
azimuth by 45°;

T+&)=2% UQ+h) =k} 1+4=244d;

this plan of interpretation of the symbol 1+ % is analogous to that em-
ployed in the caleulus of finite differences for the interpretation of the sym-
bol 144, in which also the two summands appear at first as eteroge-
neous, but are incorporated by being made to operate on one common
Sfunction fr; more elementary illustration of the process; in general the
symbol w + p, where w denotes a scalar, and p a vector, can on the same
plan be interpreted as a quotient of two lines, and therefore as a quater-
nion, by taking some line a L p, and defining that w+ p = (wa+pa)=-a,
when wa and pa are lines ; addition of this sort is a perfectly definite
operation, and has the commutative character, w+p=p +w, . . . .
Articles 401 to 405 ; Pages 887 to 891.

§ vxnn Conversely, an urbitrary quaternion ¢ can always be definitely decomposed
into two parts, such as w and p, of which one shall be a number and the
other a line, although it is possible that one of these parts may vanish ; if
g=0-a, and if we decompose the dividend line {3 by projection into
two partial vectors, or summand lines, 3, ', respectively parallel and
perpendicular to the divisor line a, and divide each part separately by
that line a, the partial quotients thus obtained will be respectively the
scalar part and the vector part of the total quotient or quaternion ¢ ; in-
troducing then the letters S and V, as characteristic of the two operations
of TAKING THE SCALAR and TAKING THE VECTOR of a quaternion, we
shall have S (w+p)=w, V(w+p)=p, andS(B+a)=8=+a,
V(= a)=F=+a itB=F 18 Bllp, BLp; g=S¢+Vg=Vq
+8¢, 1=8+V=V+8; also (compare § xv1.), §2=5, SV=V8=0,
V2=V; thus, Sw=w, Sp=0, Vw=0, Vp=p; conjugate quaternions
have equal scalars but opposite vectors, SKg=+8q, VKg=-Vy,
SK=8, VK=-V; K(w+p)=w-p (§ xxm.); Kg=8¢—Vg,
K=8-V; TK=T (§ xxxiv.), T(w+p)=T (w~p)=(u2—p2)}
(§ xxm.); if  be a scalar, V2=0, then S.xg=28¢, V.xg=xVg;
for example,

S(-9)=—8¢ V(-9)=-Vg;
8(-Kg)=—8¢, V(-Kg)=+Vg, —K=V-§;
2(w+p)=zw+ap; STg=+Tq, VIg=0;
8¢="Tq.8Uq, Vg=Tq.VUq; VUg=UVq.TVUq;
UVg=Ax.q, (UVg)2=-1, UVg=V~1;

quaternions are connected with trigonometry, by the relations,

SUg=cos /£ q, TVUq =sin £ ¢;



xxxviii CONTENTS.

these reproduce the following general expression of well-known form, as
representing in this system the versor of a quaternion,

Uq=SUq+VUq=cos/.q+\/“1 sin £ q;

but the symbol ¥ — 1 kere denotes (compare § xx11.) the particular vec-
tor-unit which is drawn in the direction of UVq or of Ax. g, thatis, in
the direction of the axis of the versor; the indetermination mentioned in
the Fourth Lecture (§ xxxv.) thus disappearing, when Uqis a determined
Versory, . . « « + « « « . . Articles 406 to 411; Pages 391 to 397.

§ Lx1iv. Ezxpressions for GEOMETRICAL LocI, supplied by the symbols 8 and V;
the scalar of a quaternion is positive, null or negative, according as the

angle of the quaternion is acute, right, or obtuse ; S (p =~ a) =S.pa-? % 0,

A
T if the symbol ap here denote the angle between the

3
directions of the two lines a, p, and therefore the angle of their quotient,
regarded as a quaternion (but not the angle of that otker quaternion which
is their product) ; to write the equation 8 (p =~ a) =0, or S. pa-1=0, is
therefore to express, by the notations of this calculus, that the line p is per-
pendicular to the line &, and consequently that the locus of the point P is
a PLANE through the origin o, perpendicular to the given line oa, if
a=04, p=0P; if also 3=08, the equation §.(p— 3)a-!=0 expresses
the perpendicularity p— Gt a, and gives, as the locus of p, a plane
through B, perpendicular to oA, or parallel to the former plane; such a
parallel plane may also be denoted by the equation S.pa-1=a, where
the scalar a is such that aa denotes the constant projection p' = 0¥ of the
variable vector p on the fixed vector a; the equation S.ap-1=1 ex-
presses that the projection of a on p is the line p itself, or that the angle
oraA is right ; it gives, therefore, as the locus of », a SPHERE with oA for
diameter ; the same spheric surface may also be denoted by either of the
equations,

according as ap é

S.(a—-p)p-1=0, T(p—g):%Ta;

methods of transforming, by calculation, any one of these equi-significant
Jorms into any other, will be explained at a later stage (in § LxxXVL);
more generally the two equations,

8

each represent a sphere described on AB asdiameter, . . . . . . .
Articles 412 to 415 ; Pages 397 to 402.

Tlo-3 (et D) =Tli(a-H)}, S35 =0,

§ Lxv. The system of the two equations 8. pa-1=1, 8.8p-1=1, represents a
CIRCLE, namely, the mutual intersection of the plane through A, perpen-
dicular to o4, and the sphere on 0B, as diameter; the product of the
same two equations, namely, the equation S.pa-1.8.8p-1=1, re-
presents a CONE, with the last described circle for its base; if this last
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equation be combined with the equation of a new plane, 8. py-1=1, the
resulting system represents a PLANE CONIC, considered as a curve in
space ; the equation of the cone may also be thus written,

p_qal
S § —=1;
Bt p

under this form it gives the SUBCONTRARY CIRCULAR SECTION of the cone,
namely, as the intersection of the sphere described on a-1 as diameter,
with the plane 8. p3=1; the parallel plane through the vertez, S.p3=0,
touches the former sphere 8. Bp-1=1, which contained the former circular
base ; this latter plane, and the plane S.pa=0, are the Two cycLIC
PLANES of the cone; the equations of these two planes may also be thus
written, 8. 80=0, 8. ap=0; for in general (by §§ xv., Lx11L), S. pa=
SK.pa=8.ap; thus, in taking the scalar of the product of any two vec-
tors, we are allowed to alter their order ; more generally it will be found
(see § Lxxx1x.), that under the sign 8 we may alter CYCLICALLY the
ORDER of any NUMBER of fuctors, even if those factors be quaternions ; a
SPHERICAL CONIC may be expressed by combining either of the two forms
above assigned for the equation of the cone with any one of the three fol-
lowing forms for the equation of the CONCENTRIC SPHERE,

Tp=¢, p2+¢2=0, S:;—::O; B

¥ is here the vector of some one point upon the sphere, and ¢ is the length
of the radius; we might also represent the same concentric sphere by the
equation Tp=Ty, or p?=y2; one cYCLIC ARC may be represented by the
two equations S.ap=0, Tp=¢, and the other cyclic arc by the equa-
tions, 8.80=0, To=¢, . . . . Articles 416 to 421; Pages 402 to 407.

§ Lxv1. If a given sphere with @ for radius have its centre at the origin o, and if
we conceive T to be a sought point of contact of the sphere with a rectili-
near tangent from a given external point s, and make ¢ =o0s, r=or,
we shall have the two equations 72=—a2, S.or-1=1, the first denoting
the given sphere round o, and the second an auziliary sphere on 0s; the
POLAR PLANE of the point s, or the plane of which s is the roLE, with re-
spect to the given sphere, is the plane of the circle of intersection of the two
spheres, and its equation (obtained by suitably multiplying their equa-
tions) is 8. or =—a? or 8. rp-1=1, ifwe make p=oM=—a2e-1; ris
here treated as a variable vector, but ¢ and u as fixed vectors ; Up=TUe,
Tp=a?Te-1; M is the centre of the circle of contact of the given sphere
with the ENVELOPING CONE of tangents drawn from S; if p=op be the
variable vector of a point P upon this cone, then

{(8.a(p~0)}2=(02+a?) (o—0)?;

but a simpler form of the equation of the enveloping cone will be assigned
afterwards (in § Lxxv1L) ; the cone which cuts this enveloping cone per-
pendicularly along the above-mentioned circle of contact, and has its ver-
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tex at the centre of the given sphere, is (8.0p)2 + a202=0; the equation
S. 6p =~ a? expresses that the points P and s are CONJUGATE. POINTS,
with respect to the given sphere ; the equations 8. po =~ a2, 8. po’'=—a?,
represent jointly a RIGHT LINE, which is the POLAR of the line s5'; the
continued equation,

S.p0=8.p0'=8.p¢=8.pc" =—a?,

expresses that the two lines PF, 5§, are RECIPROCAL POLARS of each other,
with reference to the same given sphere as before; in general, for any two
vectors p and o,

S.pe=Tp To cos (w—p0);

the scalar of the product of any two lines is equal to the rectangle under

the lines, multiplied by the cosine of the supplement of the angle between -
A

their directions ; Z.po =7 —po=7—/.pc~1;

SU.po-1=+ cos p’;r, SU. po =—cos p:r;

this supplementary relation between the angles of the product and quo-
tient of two lines (compare § Lx1v.), i3 one which it is important to re-
member in this calculus, from the principles of which it was deduced so
early as in § xv.; it may also be considered as connected with the negative
character of the square of a vector (§ xur.), since Ba=a?.Ba-1=-T
a2.Ba-!, U.fa=~T.Ba-1, and the angle of the negative of a quater-
nion is the supplement (by § xxxvI11.) of the angle of the quaternion itself;
if 3 be (as in § Lxm1.) the projection of 3 on a, then 8.B3u=LGa=af,
and this scalar product (see again § x111.) is positive or null or negative,
according as the angle between a and 3 is obtuse, or right, or acute (con-
trast again § LX1v.); the projection 3’ may be expressed in terms of ﬁ and
@, by writing 8=a-18.8a, or F=a8.8a"1,
Artlcles 422 to 426 Pdges 407 to 416.

§LxvIL Vector of the product of two lines a, 3; if 3" denote (as in § Lx11L.) the
component of 3 which is perpendicular to a, then V.Ba=g3"a=a line
perpendicular to the plane of the two given factors a, ; V.Ba L a, V.
Ba 1. 3 the rotation round this vector of the product, from the multiplier
line 3, towards the multiplicand line @, is positive ; whereas the positive
rotation round the vector of the quotient 3 <~ a, or Ba-1, is directed from
a towards B; UV.B3a=—TUV.Ba"!; the length of the vector of the pro-
duct of two adjacent sides of a parallelogram represents the area of that
parallelogram,

TV.Ba= /"7 aon="TATa sin fa;

TVU.Ba=sin ﬁ?z (compare § LxuL); V.aB =~ V.Ba, the vector of the
product of two lines changes sign (or direction) when the two factors are
interchanged (whereas, by § 1Lxv., S.a =+ 8S.8a); the perpendicular
component 3’ may be expressed in any one of the following ways,

B'=V.Basa=-a1V.fa=a"1V.af
=V.Ba-'xa=-aV.fal=aV.a"'3;
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new proof (compare § L.) that when ya = af3, then y is the REFLEXION
of the line 8 with respect to a; the equation V.pa=V.Ba, or V.(p— @)
a =0, expresses that the termination P of p is situated on the right line
through B, which is parallel to a, or to oA ; the same RECTILINEAR L.OCUS
of P may be expressed by writing p = 8+ za, where x denotes a variable
scalar ; the equation V. pa =0 denotes the indefinite right line throwgh the
origin 0, of which the given line oA is a part; V.pa=V.a3 denotes
another indefinite right line, parallel to the line o4, and passing through
a point ¢, which is the reflexion of the point B with respect to the line oa;
the equation V (pV.Ba) =0, or V.p V.a =0, expresses that p is per-
pendicular to the plane AoB of a and 3 ; whereas the equation S.p V.fBa
= 0 (afterwards abridged, see § LxXxV1., to the form S. pBa = 0), expresses
that the three lines a, 3, p, are coplanar, and gives therefore a PLANE as
the locus of p; the equation,

(V.pa)2=(V.Ba)?2 or TV.pa="TV. fa,

denotes a CYLINDER OF REVOLUTION, with a for axis, and T 3’ for radius ;

in like manner the equation (V.p3-1)2+ 22=0, or TV.pB-1=&, repre-

sents another cylinder of revolution, with 3 for axis, and JT@ for radius,
Articles 427 to 431 ; Pages 416 to 423.

§Lxvin. If we cut the last cylinder by the perpendicular plane S.p3-1 =aq, the
section is a CIRCLE, contained on the sphere Tp = (a2 + 52)3 T3 ; the sphere
round origin with radius T/3, namely, the sphere for which Tp=Tg, or
T.pB-!=1, may have its equation thus transformed, (S.p83-1)2— (V.
pB-1P=1, and may be regarded as the locus of a varying cirele, for
which 8.p83-1=2, TV.pB-1= (1 —a2)}; the first of these two equations
of the circle represents here a varying plane, and the second represents a
varying cylinder of revolution ; if « be inclined to 8, the cylinder TV.
pB-1=0 is cut obliquely by the plane 8.pa-1=q in an ELLIPSE; in like
manner the equations, 8.pa-1=z, TV.pf-1=(1— x2)}, represent a va-
rying ellipse, of which the rocus (obtained by elimination of 2) is an
ELLIPSOID, represented by the equation, . . . .

(8.pa"1)2—(V.pB-1)2=1; .

geometrical illustration of this mode of generating an ellipsoid by a cer-
tain deformation of a sphere (ellipses being substituted for circles, by sub-
stituting oblique for perpendicular sections of a certain varying cylinder);
the ellipsoid is ENVELOPED by the cylinder of revolution, whose equation
is (V.pf3-1)2=—1; the plane of the ellipse of contactis S.pa-1=0;
the equation of the ellipsoid may also be thus written, (S.pa-1)2+ (TV.
pB8-1)2=1; or thus, T (S.pa~! + V.pB-1) =1; this last form will be
found to furnish (in §§ LxxvIIL, &¢.) & new mode of generating the ellip-
soid (or rather a number of such new modes), . . . . . . . . .
Articles 432 to 436 ; Pages 423 to 430,

§ Lx1x. Analogous deformations of other surfaces of revolution ; the locus of the
varying circle, 8. p3-1 =z, TV. pf31 = (22 ~ 1)}, is an EQUILATERAL
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AND DOUBLE-SHEETED HYPERBOLOID OF REVOLUTION, Whose equation is
(8.pB-1)2+ (V.pB-1)2=1; the locus of the connected and varying el-
lipse, 8. pa-1=z, TV . pB-1= (2% — 1)}, where a is still supposed to be
inclined to 3, is another double-sheeted hyperboloid, which is not one of
revolution, and which has for its equation the following,

(S.pa-t)2 4 (V. pB1)=1;

geometrical illustrations: the right and oblique conks, which are respec-
tively ASYMPTOTIC to these two hyperboloids, have their equations formed
by changing 1 to 0 in the second members of the equations of those two
surfaces ; by changing 1 to — 1 in the same second members, we get the
equations of two SINGLE-SHEETED HYPERBOLOIDS, With the same asymp-
totic cones, of which two hyperboloids the first is equilateral and of revo-
lution, while the second touches the ellipsoid of § Lxv11L. along the ellipse
of contact mentioned in that section, namely, the ellipse whose equations
are,
S.pa'=0,TV.pB-1=1;

the second of the two double-sheeted hyperboloids touches the same ellip~
soid at the extremities of the two opposite vectors which have the directions
of + 3, the common tangent planes at those two points being given by the
formula S. pa-! =1 1; the equations,

S. B+ (V. pB1)2=0,8.pa-1+(V.pB-1)2=0,

represent two ELLIPTIC PARABOLOIDS, whereof the first is a surface of re-
volution ; the equation$S . pa-18. p3-1=8. py-1lrepresents an HYPERBO-
LIC PARABOLOID; an ARBITRARY SURFACE OF REVOLUTION may be
represented by the formula, TV.pB8-1=£(S.pB3-1), and then the con-
nected equation, TV . p3-1=7(S. pa-1) will represent the result of a cer-
tain DEFORMATION of that surface, whereby ellipses are still substituted
for circles; but if @ be supposed to be not inclined to 3, but only to be
longer or shorter, the results of all the foregoing deformations will them-
selves be surfaces of revolution, . . . Articles 437 to 440 ; Pages 430 to 435.

§ Lxx. Mac Cullagh’'s MODULAR GENERATION of surfaces of the second order, ex-
pressed in the language of quaternions ; origin being on a directriz, a being
vector of a focus, (3 vector of another point of directrix, and y perpendicular
toa directive plane, the following equation may be established, T (p— a) =

T (pS.yB—B8.yp); it will befound (see § xcr) that this equation ad-
mits of being put under the form

T(p-a)=TV.yV.8p, . . .
Article 441 ; Pages 435 to 437.

§ 1xx1. The symbol V (V. aB.°V. y3) denotes a Zine situated in the intersection
of the two planes of a, 3, and of y, 8 ; if there be six diverging vectors a,
a, . . . a" and if we form from them three others, 3, 8, 8, by the
formule,
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B=V(V.aa'.V.a"a),
B=V(V.da".V.a'a"),
B'=V(V.da". V. a'a),

then the equation, 0= 8. 8 8 3", expresses the condition for the six diverg-
ing lines, a, &, . . . a¥, being siw sides of one common cone of the second
degree, and may therefore be called the EQUATION OF HOMOCONICISM ; the
scalar function S. (3 3’8" may be called the Aconic FUNcTION of the six
vectors a . . a, or of the HEXAGoN (plane or gauche) at whose corners
they terminate, because it vanishes when they are homoconic, by a form
of the theorem of Pascal ; hence may be derived an expression by quater-
nions, for what may be called the ADEUTERIC FUNCTION OF TEN VECTORS,
a,d, . . . a'® or of the (generally gauche) pECAGON at whose corners
they terminate, because this function vanishes, when those TEN POINTS are
on one COMMON DEUTERIC SURFACE, Or common surfuce of the second
order ; the Adeuteric may be thus expressed,

2 (+ ABCDEF. GHIK),

if A . . . x be the ten points, while the symbol ABCDEFr here denotes the
aconic function of six of them, with respect to any eleventh point o arbi-
trarily taken as an origin, and ¢HIK denotes the pyramidal function of the
other four, that is, the sextupled volume of the pyramid of which they are
the corners, taken with a proper algebraic sign ; in symbols, this pyramidal
function of four points, &, H, 1, X, or of four vectors, a*}, a*ii, a¥iil, ai* may
be expressed by quaternions as follows:

S.(al*—a"l) (a"— g*1) (a¥i—a") (compare § LxxxIX.);

the ten points are supposed to be combined in all possible ways, as groups

of four and six (namely in 210 ways), by successive mutual interchanges

of points or of letters between the two groups; for every such binary inter-

change the sign + prefixed to the product varies; this formation of the

adeuteric function is only alluded to in the text of the Lecture, . . .
Article 442 ; Pages 437 to 439.

§ Lxx1r. The general addition of any two quaternions can always be easily and
definitely effected by the rule of the common operand, or by the formula
(y=a) + (B a) = (y +3) = a; subtraction of quaternions may in like
manner be effected by the formula (y == a) — (8 == a) = (y —f) <-a;

Articles 443 to 447; Pages 439 to 444.

§ Lxxim. Properties of such addition ; it is a commutative and associative opera-
tion ; the scalar, vector, and conjugate of a sum of quaternions are respec-
tively the sums of the scalars, vectors, and conjugates, S£ = =8, VE =V,
K2 =Z2K; similarly for differences, SA=AS, VA=AV, KA=AK ;it is
useful to be familiar with the two following general expressions, for the
scalar and vector parts of the product of any two vectors, S . a3=21 (a8 +
Ba), V.aB=1(aB~Ba), . . . . Articles 448, 449; Pages 444 to 447.

§ Lxx1v. The general QUADRINOMIAL FORM, q =w + iz +jy + k2, for a quater-
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nion, may now be more fully understood ; g'=w'+ iz’ +jy + k2’ being
another quadrinomial of the same sort, the sum and difference of these two
quaternions are formed by taking the sums and differences of their consrI-
TUENTS, w, z, ¥, z and w, 2, ¥, 2'; in symbols, ¢ + g =o' +w+7 (2" + )
+j (¥ +¥) + % (2 + 2) ; a quaternion cannot vanish, except by its four con-
stituents separately vanishing; nor can two quaternions become equal,
without their constituents becoming separately equal ; an equation ¢'=q
between two quaternions includes thus a SYSTEM OF FOUR EQUATIONS be-
tween scalars ;namely, w =w, ¥ =2, ¥ =9, 22, « .+ « « « .« .

Article 450 ; Pages 447 to 449.

§ Lxxv. General proof of the DISTRIBUTIVE PRINCIPLE of multiplication of

quaternions; Er . 2q=3.rq; . . . Articles 451 to 455; Pages 449 to 455.

§ 1.xxvi. Elementary applications of the distributive principle; transformations
by means of it, referred to in § Lx1v. ; the equation or identity,

(a~B)2=a2-28.aB+ (3,
is cquivalent to the fundamental formula of plane trigonometry, or to the
equation,
—_— — —_— —— A —
BAZ=CA? ~2CA . CB. C0S ACB + CB?;
centre of mean distances, or of gravity, u==. aa -+ 2 a;investigation of

the (spherical) locus of the vertex of a triangle, of which the base and the
ratio of the sides are given; T (¢ ~ny) =T (no—7), if Te=Ty, . . .

Articles 456 to 459 ; Pages 455 to 460,

§ Lxxvir. Intersections of right line and sphere; the locus of all the tangents to
the sphere p24-¢2 =0, which can be drawn from the extremity of 3, has
for equation, ¢2 (p— B3)2=(V.Bp)2; this form of the equation of the en-
veloping cone is simpler than that which was obtained in § rL.xv1., but the
one can be transformed into the other ; new investigation of the equation
of the polar plane, S. Bp =— ¢? (compare again § Lxv1.); proof by qua-
ternions, of the known karmonie property of this plane ; HARMONIC MEAN
BETWEEN ANY TWO VECTORS ; fourth harmonical to any three points (not
necessarily on one straight line) ; extension hereby given to the usual no-
tion of harmonic conjugates ; cireular harmonic group (four points on a
circle, for which what is called the ankarmonic quotient becomes unity);
interpretations of the sum and difference of the reciprocals of any two

vectors, . .« « « « o+ « .« . . Articles 460 to 464; Pages 460 to 466.

§ txxvur Equation of ellipsoid resumed (from § Lxvri), and transformed to
T (ep + px) =2 —¢2;

geometrical equality hence deduced,

AE=BD;
GENERATION OF TIIE ELLIrs01D, hence derived ; if A be a superficial point
of a fived sphere with centre ¢, and B an eaternal point, and if a secant
spY’ be drawn, and on the guide-chord Ap, or on that chord cither way
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prolonged, a portion AE be taken, which in length is equal to BV, the r.0-
CUs of the point E will be an ellipsoid, with A for its centre, and B for a
point of its surface ; ABC in this construction may be called the GENERAT-
ING TRIANGLE, and the sphere round ¢ the DIACENTRIC SPHERE; the
points D and D’ on that sphere may be said to be conjugate guide-points ;

geometrical deductions from the formula, AE =BD'; constructions for the
lengths and directions of the three principal semi-axes of the ellipsoid, a,
b, ¢; expressions for the lengths of the sides of the generating triangle,

BC=4 (a+c), cA=} (a—c), AB=ach-1;

enveloping cylinder of revolution, with the side AB for axis, and Bc=5
for radius, if ¢ be the second point of intersection of AB with the diacentric
sphere ; the two other sides, BC, €A, of the triangle are perpendicular to
the two cyclic planes of the ellipsoid; the one that is 4.k, or_L ca,
touches the diacentric sphere at A; these planes are also shewn by this
construction to be (as is known) the cyclic planes of all the concentric
cones, that rest on those SPHERICAL cONICS in which the ellipsoid is cut
by a system of concentric spheres ; MEAN SPHERE, containing the two dia-
metral and circular sections; the construction exhibits also geometrically
the known mutual rectangularity of the semi-axes AE;, AE, of any other
diametral section of the ellipsoid, and conducts easily to the known ex-
pression for the difference of the squares of their reciprocals, namely,

AEy 2~ AE;2=(¢-2~a-?) sin v sin v

where v and ¢ are the inclinations of the cutting plane to the two cyclic
planes ; the equations of these latter planes are, respectively, S.1p =0,
S. kp=0; the equation of the mean sphere is
Tp=b=(k*—&)T (¢—k)-1;
a=Ti+ Tk, e=Te~ Tk, ac=k2— 1% achb-1=T (L —«k);
equations of « spherical conic on the ellipsoid ; expressions for the two new

vectors, ¢, &, as functions of the vectors, a, 3, of § LxvI1,, . . . . .
Articles 465 to 470 ; Pages 466 to 475.

§ Lxxix. Introduction of two new vectors, X, u, with two new scalars, A, &, and
two new points, L, M, which all depend upon and vary with the vector p,
or the point E, and satisfy the equations,

A=(kp+px) (k—t)y1=h(t—k)=AL=h. AB,
p=0p+p) (t=6) 1=k (k~)=Am=k.Ba;

to each given value of 2 (between certain limits) answers a circle on the
ellipsoid, for which

S.kp=3AT (t— k)%, LE=T (o —\)=b;

in like manner, to each given value of %' (suitably limited) there answers
another circle on the ellipsoid, determined by the equations,

S.l():%th(l—K)Q,M_ﬁ=T(p—y)=b;
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these two subcontrary and circular sections of the ellipsoid have their
planes perpendiculur to the sides, cA, cB of the generating triangle
(§ LxxvIIL), and therefore parallel (as is known) to the two cyclic planes;
every such pair of subcontrary circles (k, k) is contained (as by known
results it ought to be) on one common sphere ; this sphere, in these calcu-
lations, is given by the formula,

T(p-E)=NE=n,

where the vector £, the positive scalar #, and the point N, may be deter-
mined by the equations,

AN=E=hui N, 2~ n2=(h+ k) (h?+ k)

and if we make EN =£— p = b2, then X is the foof of the normal to the
ellipsoid drawn at the point &, and terminated by the plane of the gene-
rating triangle, or by the plane of the greatest and least axes, while  de-
notes the length of that normal ; the new vector » is parallel to the normal,
and satisfies the equation 8. vp = 1 its expression as a function of p is,

v=(k2-)2{(t—k)?p+2.8.kp+2¢8.1p};

the equation of the ellipsoid may be put under the form, p2 + b2 = Ay,
while that of the mean sphere may be thus written, p2+52=0, . . .
Articles 471 to 474 ; Pages 476 to 479,

§ Lxxx, If we make for abridgment v = ¢ (p), or simply » = gp, the vector Junc-
tion ¢ will be linear or distributive,

P (p+p)=0p+¢p, App=9Ap, ¢ (zp) =2 ¢pp;

and if we agree to write £ (0, =) =S . p¢p®, the scalar function f will be
at once commutative or symmetric with respect to the two vectors on which
it depends, and Znear or distributive relatively to each of them, so that
S(mp)=flpyo)flp+p,w+a) =1 (p, @) +f(P’ Zﬂ")+f(p',‘lﬂ') +f
(0's ), f(2p,y™) =2yf (p, w); if then we farther abridge f(p, p) to f
(p) or to fp, this new scalar function of one vector will, relatively to it, be
of the second dimension, and we shall have

flo+p)=rfo+2f(p, p) + S0 F (xp) =% ;

the equation of the ellipsoid reduces itself in this notation to the formula,
So=1; and if a eylinder (not generally of revolution) be circumseribed
about the ellipsoid, with its generating lines parallel to a given vector w,
the equation f'(p, ™) = 0 represents the diametral plane of contact, and
the normal to that plane has the direction of the vector ¢ ; in general
the last equation denotes that the directions of p and 25 are conjugate, re-
latively to the ellipsoid; reciprocal relations of bisection, conjugation of
line and plane, system of three conjugate semi-diameters, equation 22 + 2
+22=1, . . . . . . . . . Articles 475 to 480; Pages 480 to 485.

§ Lxxxr. Theequation f(p, @) =1,0r S, vz5 =1, expresses that the vector @ ter-
minates on the tangent plane to the ellipsoid, drawn at the extremity of the
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semi-diameter p ; the vector v, or ¢p, may be called the VECTOR oF PROXI-
MITY, namely, of the tangent plane to the centre, because its reciprocal
v-1 represents in length and in direction the perpendicular let fall from
that centre on that plane; in general the formula f (o, @) = 1 may be said
to be the equation of conjugation between the two vectors p and z, be-
cause it expresses that they terminate in two conjugate points ; the same
equation represents the polar plane of either of those two points, when the
other is treated as variable ; if @ be treated as the vector of the vertex of
an enveloping cone, the equation of that cone is

@) -1} =(fp—-1) (fw~1):
when the vertex goes off to infinity, there results an enveloping cylinder,
with the equation f'(p, 22)2= (fp — 1) f# ; verifications for th e case of t
sphere, for which k=0, ¢p=1-2p; general harmonic property of the polar
plane, . . . . . . . . . . . Articles 481 to 486; Pages 485 to 491.

§ Lxxxi1. The triangles LMN, ABC, are similar and similarly situated in one com-
mon plane ; the points B, b, E, L are concircular ; the triangle L is isos-
celes ; the lines LN, MN are portions of the axes of the two circles on the
ellipsoid which pass through the point B, . Articles 487,488 ; Pages 491, 492.

§ Lxxxur. New proof of the associative principle of multiplication of quater-
nions, derived from the distributive principle ; importance of combining
these two principles, . . . . . .  Articles 489, 490 ; Pages 493 to 495.

§ Lxxx1v. Transformed equation of the ellipsoid,
T{p+p)=k2—i2;w=¢k=T.w;
new generating triangle Ar'c, and new diacentric sphere round ¢, touch-

ing at A the cyclic plane L ¢ (compare § LXXVIIL) ; AR is the axis of
asecond enveloping cylinder of revolution ; if we make (compare § LxxIx.),

AL=N=2(—) 1S . kp, AM =/ =2(( - k)18, ¢p,

the two new triangles, LM'N and AB'C’ are similar and similarly situated in
one common plane, namely, in the principal plane of the ellipsoid; the
symbols V-10, §-10, denote respectively a scalar and a vector 5 when
three points are collinear, the vector part of the quotient of the differences
vanishes and conversely; LMML is a quadrilateral in o circle, whereof the
diagonals LM, ML intersect in N, that is (§ Lxx1x.), in the foot of the
normal to the ellipsoid ; GENERATION OV A SYSTEM OF TWO RECIPROCAL
ELLIPSOIDS, by means of a MOVING SPHERE ; generation of the same sys-
tem of two ellipsoids by means of a FIXED SPHERE ; ifthe sides of a plane
quadrilateral inscribed in the fired sphere move parallel to Jour fized
lines, one pair of opposite sides will intersect in a point on one ellipsoid,
and the other pair of opposite sides will intersect in the corresponding
point on the other or reciprocal ellipsoid ; these two ellipsoids have one
common mean sphere, namely, the fixed sphere employed in the construc-
tion ; other geometrical relations of the fixed sphere and lines to the two
ellipsoids thus generated, . . . . Articles 491 to 495 ; Pages 495 to 502.



xlviii CONTENTS.

§ Lxxxv. Generation of an ellipsoid by means of 2 PAIR OF SLIDING SPHERES ;
if two equal spheres slide within two cylinders of revolution, whose axes
intersect each other, in such a manner that the right line joining their cen-
tres moves parallel to a fixed line, the locus of their circle of intersection
1s an ellipsoid, inscribed at once in both the cylinders; the same ellipsoid
may also be generated as the locus of the circular intersection of another
pair of sliding spheres, inscribed within the same two cylinders, but with
their line of centres parallel to a different straight line; the diameter of
each sliding sphere is equal to the mean axis 25 of the ellipsoid ; an arbi-
trary curve on the surface of the ellipsoid may be described by the vertex
E of an isosceles triangle LEM (or L'EM), the common length of whose
two sides EL, EM' (or EL, EM) is constant, and = b, while its base LM’ (or
1)M) moves parallel to a given line Ac (or AC'), and is inscribed in a given
angle BAB'; or a rhombus of constant perimeter, = 4b, may be employed to
generate, in an analogous way, by the motions of two opposite corners, two
curves on the ellipsoid, . . . . . . . . Article 496; Pages 502, 503.

§ LxxxvI. Introduction of two new fived vectors, n=T:e U (t—«), 0=Tx U
(¢ —«") ; making g=—4& T (1 — xe-1), we have u=gn, X'=g0, and the
equations of one pair of sliding spheres become

Tlo—gn)=T(p-9g0)=b;
for any one value of the variable scalar g, the plane of the circle of inter-
section i3 represented by the equation,
9(2 -4 =28.(8—n)p,
and we have the value, 5 — 8 =2 Ue; elimination of g gives for the ellip-
soid, regarded as the locus of these circles, the transformed equation,
np—pf  2—n2
1-0  T(3-6)’

np —pb
TV ———
U(n-6)
other mode of obtaining this last equation from the form in § LxxvrrL,

namely, T (ip + pk) = k2~ 2; in general, for any three vectors a, 3, v, we
have the identities,

S.afy=-8.yBa, V.aBy=+V.y8a,

with analogous results (compare §§ L1r1., LX1IL) for the scalar and vector
of the product of any odd number of vectors ; we have also, generally,

S.yV.Ba=8.y8a,8.yVg=8.yq;

= 0?92 or, TV

a fraction in this calculus may generally be transformed (as in Algebra),

by dividing both numerator and denominator by any common vector or

quaternion distinct from zero ; or, in other words, by multiplying each into

(but not generally dy) the reciprocal of any such vector or quaternion, .
Articles 497 to 500 ; Pages 503 to 509.

§ LxxxviL. Geometrical significations of the two new fixed vectors, 4, 0; 7+ 6
= i3 the vector of an uMBILIC of the ellipsoid, and the equation of the
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tangent plane at that umbilic (found by making g=2)is S.(8—9) p=
62— 52 ; the umbilicar normal there has the direction of 4 — 6, or of the
cyclic normal ¢; 8-1—2-1 has the direction of the other cyclic normal «;

t=Typ U (n—-6), c=TOU (0-1-5-1);
a=Ty+TO, b=T(1[—-9), c=Tyn-TO;

the sum and difference U4y + UB are respectively equal to U (¢ —«) + U
(¢—«"), and have the directions of the greatest and least axes of the ellip-
soid ; the length of an umbilicar vector, or umbilicar semi-diameter of the
ellipsoid, is

u=To=T (n+0)=V (a2-b2+ ¢?);

the length of the perpendicular from the centre on the umbilicar tangent

plane is
p=(62-2) T(y—0)-1=ach-1;

these values of » and p agree with known results ; another umbilicar vec-
tor is

W=TpU8+TOUn==-T.50.(y140-1);
— w,— ' are also umbilicar vectors; thus -1+ 6-! has the direction of

such a vector ;
w4+« =(Ty+TO) (Un+1UH),

w—o'=(Tn—TO) (Uy - U,
the angles between the umbilicar diameters are seen to be bisected by the
greatest and least axes, . . . . . Articles 501 to 503 ; Pages 509 to 511.

§ txxxvir For the square of any quaternion we have the following scalar, vee-
tor, and tensor,

S.42=8¢2+Vg% V.q?=2Vq8q, T.¢2=8¢2—Vg?;

hence for the scalar of the square root of any other quaternion ¢' we have
the expression,
SV ¢=V (387 +41Tq);

this is only one out of a vast number of general transformations,in which
the present cALcuLus abounds, and which may be deduced from the
laws of the symbols 8, T, U, V, K ; applied to the ellipsoid, in combination
with the recent values for a, b, ¢, it enables us to infer that the linear ec-
centricities of the two sections, perpendicular respectively to the mean and
greatest axes, are,

(a2 — ) =2TV (50), (32— )t =28V (46);
if we change at once 8 to t@ and 7 to ¢£-1 7, where ¢ is any positive scalar,
We pass to a CONFOCAL ELLIPSOID, the FOCAL ELLIPSE and FOCAL HY-

PERBOLA remaining still unchanged ; the focal ellipse may conveniently
be represented by the system of the two equations

S.pUn=8.pU0, TV.pUn=28VY (»6),
which represent separately the plane of the ellipse, and a cylinder of revo-

g
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lution on which the ellipse is contained ; or we may combine the same plane
with this other cylinder of revolution,

TV.pU0=28V (98);

the focal hyperbola is adequately represented, as a curve in space, by the

single equation,

V.np.V.p0=(V.90)2

because this equation will be found to include within itself the equation

of the plane of the hyperbola, namely, S. pn8=0, as well as the constancy

of the product of the projections on the asymptotes, which asymptotes are

here the lines 7, 8, or (as is known) the axes of all the cylinders of revo-

Jution circumscribed about the ellipsoid and its confocals; . . . . -
Articles 504, 505 ; Pages 511 to 513.

§ Lxxx1x. In general, in this Calculus, a scalar equation, fo = ¢, involving one
variable vector p, represents a surfuce ; in fact it is equivalent to an ordi-
nary algebraic equation between the three Cartesian co-ordinates x, y, 2,
and may be changed to such an equation by substituting for p its trino-
mial value iz +jy + k2 (see § X1x.); examples; the actual process of
squaring the last-mentioned trinomial gives p?=—a? —y?—22; if wemake
a=ia+jb+ke, o =id +jb + ke, then actual multiplication gives ex-
pressions for the products ap, a'ap, of which the scalar parts are, respec-
tively, §. ap = — (a¢ + by + cz), and 8. d'ap = the DETERMINANT

a, b, ¢
d, b, c,
T Y 25
or =a(bz~cy) +b(cr —dz)+ c(dy—ba);

we have the two identities,

0S.yBa=vS.pBa+ PS. ypa+aS.ySp,
pS.yBa=V.BaS.yp+V.ayS.Bp+V.v038.ap,

of which the second shews that the elimination of p between the three
equations S.ap=0, 8.8p=0, 8.yp=0, conducts to the equation
8. yBa=0; co-ordinates and quaternions may thus be employed to as-
sist and illustrate each other ; additional examples; the symbol S. ySBa
denotes the volume of the parallelepipedon of which afy are edges, this
volume being taken positively or negatively, according as the rotation
round y from B to a is negative or positive (compare § XXXIX.); Wwe
might in this way see (compare § LxxxvL) that this function S. ySa
changes sign, when any two of its factors are interchanged ; the scalar of
a product does not alter, when its factors are CYCLICALLY PERMUTED,
S.yBa=8.Bay, S.srg=8.rgs, ke o o . o 0 o 0 0 0 e
Articles 506 to 512 ; Pages 513 to 521.

§ xc. An equation of vector form, ¢p = A, where ¢ denotes a wvector function,
and X a given vector, may in general be resolved into three scalar equa-
tions, which suffice (theoretically speaking) to determine generally z, 7, 2,
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and therefore also p, or at least to restrict those co-ordinates, and this
vector, to a finite variety of values ; examples; if q be a given quaternion,

the equation V. gp =X gives pSq= A+ ¢-1V.A\Vq; notations ;—’, &e.;

other form for the solution of the last equation in p; the equation
BAB-1+ Ay-1
By+v8
in connexion with the results of § XL1L ; the sine of the semisum of the
angles of the spherical triangle DEF is equal to the cosine of the com-
mon bisector A® of two sides, divided by the cosine of ¢p, namely, of the
half of the third side; for any three vectors, we have the following trans-
formation, which is very often useful in this calculus,

V. Boy=0S.yp~ 8.5y +yS. fp,
Articles 513 to 518 ; Pages 521 to 526.

V. Bpy=2X gives p= ; interpretation of this expression,

§ xcr. Other mode of deducing this general and useful equation of transforma-
tion ; if II' be used as the characteristic of the operation of taking a pro-
duct, with an inverted order of the factors, then (by §§ vLur., LxiL),
K=MK, 8=} (1+K), V=3 (1-K);
hence '
SI=3IT+ 4K, VII =311 — }1TK;

thus, whatever vectors «, 3, v, ¢, may be, we have

S.yBa=4(yBa—aBy), V.yBa=}(yBa+aBy);
8. 3yBa=1 (8yBa+ aByd), V. dyBa= % (dyPa— aByd), &a ;

and the identity, } (yBa+ aBy) = by (Ba+ aB) — 3 (ya + @) B +
3a (yB+ By) gives V. yBa=y8 . Ba— S . ya+ aS. By, a result agree-
ing with the Jast section; we have also (compare § Lxx.), these two other
formulze of transformation,

V.yV.Ba=aS.8y—BS.ay; V(V.yB.a)=y8.Ba~PS.ay;
the student ought to make himself very familiar with the three last for-
mule, which are valid for any three vectors ; we have also, for any four
vectors,

wow v

S.d"a"da=8.a"aS.da"-8.d"¢S.da+8.a"dS.aa’;
S(V.a"d".V.da)=8.a"a.S.da"~8.a"ad.8 .d'a;

ooy

the comparison of the two expressions for V (V. a"a". V. a'a) conducts to
the first identity of § Lxxx1x.; as included in which, it is shewn that if
a, o be two non-parallel vectors, and a'=V. d'a, then an arbitrary vec-
tor p may be expressed as follows,

. S. &
p:aSa—,‘,)i—a'Sﬁ:-l- L:p’
a a a

Articles 519 to 523 ; Pages 526 to 529,
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§ xcrr. Connexion of quaternions with spherical trigonometry ; the expression
recently given for the scalar part of the product of the vector parts of two
binary products of vectors may be interpreted as equivalent to the follow-
ing theorem of Gauss,

o ot

€08 LL. ¢0s L'L” — ¢0s LL". €08 L'L” = gin LL'. sin L"L" cos A,

wo

where A4 is the spherical angle between the ares LL, L'L"; there are various
ways of deducing from quaternions the fundamental formula, cosb=
€08 ¢ c03 @ + sin ¢ sin a cos B; if the rotation round B from a towards y
be positive,

V.yB.V.Ba =sin asin e (cos+ Bsin) B;

tan affy = tan B= ﬁ—l‘g’ (V.4B8.V. Ba), -
Articles 524 to 526 ; Pages 529 to 532.

§ xcru. Connexion of quaternions with goniometry, or with the doctrine of func-
tions of angles ; a and ¢ being any two unit-vectors, and ¢ any scalar, we
have S.a?=8.¢=f(t) =ft= a scalar and even function of ¢; a’=jt
+af (t-1) ¢=fi+ fE~-1); f(-)=fb F@FO=—Jt; flut?)
sfuft—f (= 1) f(E~-1); (P + {fE-1D}2=1;7(F) = G+ 1Y
the values of ft may be numerically calculated and tabulated ; the func-
tion f of a multiple of ¢ may be transformed by the help of the equation,

Y () ={ft+ ot -D}r+{f—f -1}
the consideration of a small rotation gives the differential expression,

™ 2
d.¢=Zut1dt; hence ft =2 f (¢ +1), f”t+<g-)ﬂ=0;ﬁ)=l,f0=o;

developements for ft and f(¢ —1); ot =ebnts, this exponential symbol being
here employed merely as a concise expression for a series of well-known

. N . . k2 mt
form ; with the usual notations for cosine and sine, ft =cos 5 ¢ =cos 7

t
+usin %; the equation y*3vaz=—1, of § XL1x., under the form y?-z=

Bra*, may be expanded into the following, cos (m—C)+y sin (w—C)
= (cos B+ 3 sin B) (cos A+ a sin 4); the comparison of scalurs gives a
known and fundamental formula of spherical trigonometry, from which all
others might be deduced, namely, — cos C'= cos B cos 4 —cos ¢ sin Bsin 4 ;
the comparison of vectors gives

ysinC=asin 4 cos B+ (3sin Beos A+ V. Ba.sin 4 sin B,

which may be interpreted as a theorem respecting the construction of a pa-
rallelepipedon, connected with a spherical triangle; addition of quater-
nions, and the distributive character of their multiplication, might be illus-
trated by spherical trigonometry, . Articles 527 to 529 ; Pages 532 to 537.

§ xciv. Brief account of some early investigations by the present writer, whereby
he was led (in 1843) to results agreeing in substance with those lately
mentioned, respecting the connexions of quaternions with spherical trigo-
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nometry ; symbolic multiplication table, for the squares and products of
i, j, k ; developement of a product of two quaternions, under their quadri-
nomial forms ; reproduction of a theorem of Euler, respecting the products
of sums of four squares ; subsequent extension (in the same year) by
J. T. Graves, Esq., to a theorem respecting sums of eight squares, and to a
theory of certain octaves, involving seven distinct imaginaries; allusion to
subsequent publications of Professor De Morgan, and other mathematicians
of these countries, in the same general field of research, or at least on ana-
logous subjects, such as the friplets, tessarines, and pluquaternions ; the
writer regrets that it is not possible for him here to analyze, or even to
enumerate, those important and interesting publications ; the quaternions
early conducted him to a general theorem respecting spherical polygons,
which includes as a particular case the following theorem respecting a
spherical triangle, and may in turn be derived from it,
(cos C+ ysinC) (cos B+ Bsin B) (cos 4+ asin 4)=—1;

this particular theorem may be expressed by the lately cited formula of
§ xLI1X., y*BYa®=—1; the more general theorem for a polygon may be
expressed by an analogous equation, namely, a:’:;l. coar® at=(—1)1;

another early and general theorem of this calculus, respecting spherical
polygons, which is a sort of polar transformation of the foregoing, may

1

111

be expressed by a connected formula, . Articles 530 to 536 ; Pages 537 to 545.

Exponential Functions, direct and inverse ; the tensor of the sum of any
number of quaternions cannot exceed the sum of the tensors ; if we write

q q2 qm
=145ttt —
Fug=l4i+t1 gt 1w

the number » may be assumed so large, however large the given tensor of
the quaternion g may be, that the last term (reading here from left to
right) may have its tensor less than any given and positive quantity, b ;
and not only so, but that the guaternion sum of the »n following terms of
the same series, or the quaternion difference Fuyin (§) — Fm (q), shall also
have its tensor < b, however large the number = of these new terms may
be ; the finite series Fy.q converges to a definite quaternion limit, F ¢
or Fg, when the number m of terms increases indefinitely ; the resulting
function, Fq, has the well-known EXPONENTIAL CHARACTER, wWhenever
the condition of commutativeness is satisfied; Fr.Fg=F (r+¢) if rg=
gr; for example, we have, generally, Fg=FS8q.FVg, where it is found
that FSq is a positive scalar, and FVgq is a versor, so that TFq = FSgq,

TFVg=1;UFg=FVg=(cos+ UVgsin) TVq;F (Vg + % UVy)=UVyg

.FVq, F (Vg + #UVq) = — FVq = (cos — UVg sin) (m —~TVgq); the
function FVg is a periodic one, in the sense that it only changes sign,
when we add + o to TVq; ANY VERSOR, Ur, may be considered as an ex-
ponential function of a vector, and put as such under the form FVg, where
the (positive) tensor TVq shall not exceed 7, and may therefore be treated
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as the angle of the versor, TVq =/ Ur, with that definite sense of the
word “angle,” which was proposed in § xxxi1.; if the versor Ur have
been given, or found, under the form, ¥Vg, and if TVg >, whereas
TVq¢ :l> m, it is proposed to consider V¢, and not Vg, as the (principal)
value of the INVERSE EXPONENTIAL FUNCTION, or to write F-1 Ur =Vq';
with this definite signification of that function we may therefore write,
Lr=,Ur=TF-1Ur;also UF-'Ur=UVr=Az.r,and F-* Ur=UVr.
L r; we may also definitely interpret F-1Tr as =1Tr= that positive or
negative number, or zero, which is the natural or Napierian logarithm of
Tr ; and more generally we may agree to call the inverse exponential func-
tion (or the IMPONENTIAL) F-1 7, OF ANY QUATERNION 7, the LOGARITHM
of that quaternion, and to interpret it definitely as follows :

Ir=F-1r=F-1Tr+F-1Ur=1Tr + UVr. . r;

the scalar of the logarithm of a quaternion is thus the logarithm of the
tensor, and the vector of the logarithm is the logarithm of tke versor ; in
symbols,
Str=1Tr, Vlr =1Ur=UVr. /r

=product of axis and angle ; that is, the vector of the logarithm of any
quaternion is constructed, in our system, by the REPRESENTATIVE ARC
RECTIFIED, and placed PERPENDICULARLY TO THE PLANE, or in the DI-
RECTION OF THE AXIs, of the quaternion ; the logarithm of a given qua-
ternion, thus interpreted, is generally o DETERMINED quaternion, but be-
comes partially indeterminate, when the given quaternion degenerates to
a negative number, or to zero ; we may agree to employ the usual symbol
€4, as a concise expression suggested by algebra (compare § xcriv.), for
the series 1 4+ q+ 4 q% + &c., or for the direct exponential function Fg; a
POWER of a quaternion, with a QUATERNION EXPONENT, may then in ge-
neral be definitely interpreted by means of the formula,

g =F (rF-1g)=e'1; examples,ji=k,jf=e’;;

expressions for the tensor and versor of the general power, g”; MENSOR of
a quaternion, Mg =1Tq (this notation and nomenclature are not insisted
on); definite interpretation of the logarithm of a given quaternion to a
given QUATERNION BASE, namely, as the quotient of their two natural lo-
garithms ; log, . ¢'=1¢' -+ lg ; this GENERAL LOGARITHM might be so in-
terpreted as to involve two arbitrary integers, as in some known theories ;
but we prefer, in this calculus, to exclude such indetermination by defini-
tion, in this as in other cases, wherever such exclusion is possible ; inter-
pretations of the sine, cosine, and fangent, of a quaternion ; if we take two
arbitrary quaternions, q and r, we shall still have, as in algebra,

eer=1+(rtq)+h (2 2+ gD + e

but 72 + 2rq + q2 &c. will nof in this calenlus be equal to the square, &c.,
of 7 + ¢, unless rq = qr, or V.VrVq= 0, which will not generally happen;
when this condition of commutativeness, of q and » as factors, is not satis-
fied, then if x be any scalar coefficient, supposed to vanish after the per-
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formance of n successive differentiations, we shall indeed have s#il! the ex-
pression,

d \»
(a ) cerreri=gntprn-lgtin (n~1)m-292+ .. +q*;

but the polynome, thus obtained, will not be an expansion of the power
(r+¢)n . o . . . . . . . Articles 537 to 550 ; Pages 545 to 557.

§ xcvi. A quaternion equation, fg = r, where f denotes a function of known form,
may always be conceived as broken up into four equations of the ordinary
algebraic kind, involving the four constituents, w, z, y, 2, of the sought
quaternion ¢ (compare § LxX1v.) ; we may conceive zyz to be eliminated
between these four equations, and the final equation in w to be resolved ;
or we may suppose that p = Vq is deduced (compare § xc.) from the vec-
tor equation, Vfy= Vr, and that its value is substituted in the scalar
equation, Sfg = Sr, and that w = Sq is then deduced therefrom ; or the eli-
mination between these two equations, of vector and scalar kinds, may be
performed in the opposite order ; we may also substitute, for the one vector
equation, three scalar equations, such as

S.kfg=8.¢r, S.My=8.xr, S. ufg=8. pr,

where &, X, p are any arbitrary and auxiliary vectors; equations of the
form X .bga =c, 2.agarqa + 2. bigb=c, may be called respectively
equations of the first and second degrees ; the general equation of the nth
degree, in quaternions, breaks up into four scalar equations which are each
of the same (nth) degree ; and elimination between these must be supposed
to conduct, generally, to an ordinary equation of the degree of which the
exponent is n!; thus a quadratic equation in quaternions may be expected
to have, in general, sizteen roots, or solutions, af least of the symbolical
kind ; although in particular cases, by the vanishing of certain terms, the
degree of the final equation may be depressed below its general value, . .
Articles 551 to 553; Pages 557 to 559.

§ xcvir. Discussion of the general equation of'the first degree, T . bga = ¢, where
a, b, a,V,...and ¢ are given quaternions, but ¢ is a sought quaternion ;
taking (compare § xcvL) the scalar and vector parts, and then eliminat-
ing w or Sq, there results a linear and vector equation of the form =, 3S.
ap + V.rp =0, where a, 3, &, 3, . . . . and o are given vectors, and r is
a given quaternion, but p is a sought vector ; the equation gives

S.Ae=8S.XNp, if '=Z3.aS.80+V.3s),

where s =Kr; forming similarly ' from g, and assuming X and g so that
V. A\ =0, we have

mp=V.Nu'=3V.ad'S.886+EV.aV (V.B0.r)+8V.or-VrS. or,
and the scalar coefficient m=28. ad'a’S.8'B3+ 28 (+V.ad' . V. 88)
+8r2S.7aB — =8.7aS.rB+ SrTr2; remarks on the notation ; exam-
ples ; solutions of the equations, V. Bpa = o, V.7p = g, agreeing with the
results of § xc. ; discussion of the equation bq 4 gb=c, where b, ¢, ¢ are
quaternions ; one form of solution-is, 2¢Sb = V¢ + KbS. ¢b-1 ; another is,
2qb (b + ¥y =b'c + cb, if b’ = Kb, so that b+ b’ = 28b, and bb = b =Ts?;
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or we may deduce and employ the equation, (bg —¢b) 8 =V.VdVc; or
may regard the proposed equation as a case of the following,
ag+gb=g¢,

which gives, ¢ (42 + 2S¢ + Ta2) =d'c + ¢b, if o' =Ka; if we maker=g
+y,and £.8S.ap+ V.yp=¢p, Y=¢ +9g, the general linear and vec-
tor equation of the present section becomes Pp = ¢, and the problem of its
solution comes to inverting the function ¥ ; the functional characteristic
¢ is found to satisfy a SYMBOLIC AND OUBIC EQUATION, 0 =n - n'¢
+ n'¢? + ¢3, where n, n, n" are three scalar coefficients, of which the va-
lues are assigned, in terms of the given vectors, a, 8, «, 3, . . and y ; the
characteristic { must therefore satisfy this other symbolic and cubic equa-
tion,

0=14% —m'2+ m'y — m, where m =g3 —n'g?

4 n'g—n,m =8g2—2m'g+n, m'=8g—n";
the solution of the linear equation, Yp = ¢, comes thus to be found anew
under the form,

mp =myria = (m'—m'Y +§2) 0= 0" — g0 + g0,

where & and ¢ are vectors derived from the given vector o, by assigned
operations, involving the given vectors a, 8, «, 8} . . and y, but not the
scalar ¢ ; theorem of the PARALLELEPIPEDON OF DERIVATION, obtained
by interpreting the lately written symbolic and cubic equation ; for any
proposed mode of LINEAR DEFORMATION, represented by the operation ¢,
if we form the three successive derivative lines, Yp, {?p, {3p, and then
decompose, by projections, the original line p into three others, in these
three directions, or in their opposites, the ratio of each component to the
corresponding derivative line will depend ONLY ON THE MODE OF DERI~
VATION, and not generally on the length, nor on the direction, of the line
p thus operated on; we have my~10=10, and therefore generally y~10
=0 ; but if it happen that g is a root, g1 or g, or g3, of the ordinary cubic
equation, 0 =m = g3~ n’g? + n'g — n, then the function Yp may vanish,
without p itself vanishing; if, after assuming any arbitrary vector o, we
derive from it three others by the formule,

p1= 6"~ 16’ + 9120, pa=06"— g20' + g0, pa=0" — g30’ + g3%a,

we shall have
Yipr=apr=daps=ma=10;

that is, for these THREE DIRECTIONS, p1, P2, 3, We shall have
$P1=—9101) Pp2="—92p2 PP3=—"93p3;

this analysis might be developed so as to include the theories of the azes
of a surface of the second order, and the axes of inertia of a body, . .
Articles 554 to 567 ; Pages 559 to 569.

§ xcvur. Definition of the DIFFERENTIAL of @ FUNCTION of a quaternion,

- dfyg=lim .n {f(g+n-1dg) —fe}s
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q and dq are here any two quaternions, Tdq being not necessarily small,
but the positive whole number » being conceived to increase without li-
mit ; the third quaternion dfg, which results as the limit of this process, is
a function of the two assumed quaternions, q and dgq, of which the parti-
cular form depends on the form of the proposed function, J, but which is
always linear, or distributive, with respect to the quaternion dq ; but this
differential dfy is not in general reducible in this caleulus, to a product of
theform f'q . dg, iff'q denote a function of the quaternion q alone ; when the
function f (g + dg) can be developed in a series, involving terms or parts
of successively higher and Aigher dimensions, with respect to the quater-
nion dg, the part of this developement which is of the first dimension, re-
latively to dg, is (as in the ordinary differential calculus) the required
differential dfg ; but it is proposed to avoid, in this caleulus, adopting this
as the fundamental property of a differential, because the recent definition
can often be applied more easily than the developement can le found;
examples; d.¢g2=g . dg + dg . ¢, or more concisely, d. g2 = gdg + dgq, dg
being treated as a simple symbol, or as if it were a single letter ; d. q!
=-—g-'dggq!; in differentiating any product of quaternions, we simply
differentiate each factor in its own place ; we may extend Taylor's series
to quaternions, under the form f(q + dg) =e%fq, where dqis treated as
constant ; examples; . . . . . . Articles 568 to 573; Pages 569 to 572.

§ xc1x. Geometrical applications ; if a vector p be a given function ¢¢ of a varia-
ble scalar ¢, we may express its differential under the usual form, dp = d¢t
=¢'t. dt=p'dt, where p'=¢'t = a certain derived vector, which is parallel
to the tangent to the curve in space, which is the locus of the extremity
of p; the length of this new vector is unity, Tg't = 1, if the arc be the in-
dependent variable; in mechanics, if ¢ denote the #ime, and if a second
differentiation have given dp’=dg't = ¢'¢. dt=p"d¢, then o’ may be called
the vector of velocity, and p” the vector of acceleration, while p may be
named the vector of position ; in geometry, if ¢ be again the arc of the
curve, p—p'-1is the vector of the centre of the osculating circle, and p’
may therefore be called the wvector of curvature ; when a surface is ex-
pressed, as in § LxXX1X., by an equation of the form fp = const., where f
denotes a scalar function, we may then, by cyclical permutation under the
sign S (see the same section LXXXIX.), express the differentiated
equation of that surface under the form dfp=28.vdp=0; the logic
of this process will be more closely considered in § cr.; v isa Nor-
MAL VECTOR, and if we oblige it to satisfy the condition S.»vp=1,
then (compare § Lxxxr.) its reciprocal v~} will represent, in length
and in direction, the perpendicular let fall from the origin of vec-
tors on the tangent plane to the surface, so that v itself may be called,
under the same conditions, the vector of proximity ; without oblig-
ing » to satisfy the equation 8.vp =1, if we only choose it so as to
give generally 8. »dp=0, it will still be, as before, a normal vector, and
this symbol v may be used to form EQUATIONS OF CLASSES OF SUR-
FACES ; thus an arbitrary cone (with vertex at origin) may be denoted

h
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by the equation 8. v»p =0, an arbitrary cylinder by 8 .va=0, and an
arbitrary surface of revolution by S.pvp=0; this last equation is ana-
logous to an EQUATION IN PARTIAL DIFFERENTIALS, and may be treated
as such by a species of INTEGRATION, climinating v, and introducing an
arbitrary function, under the form p2=T (8.Bp), or TV.pB 1=
f(8.p3-1), which last form was assigned in § LX1X.; conversely, by a
process of differentiation, we can eliminate the arbitrary function, f, from
this last equation, and so recover the formula of the present section,
S.Bvp=0, . . . . . . . . Articles 574 to578; Pages 572 to 575.

§ c. Geodetic lines ; the normal property of the osculating plane gives the following
general equation of a geodetic, S . vdpd2p =0, or 8. vp'p" =0, p being re-
garded as a function of some scalar variable ; we have also this other ge-
neral formula, V. »dUdp =0, where dUdp denotes the differential of the
versor of the differential of p, and is treated as a simple symbol ; if we
take the are of the geodetic as the independent variable, or suppose that
Tdp is constant, the last general form may be reduced to V. vd2p =0, ov
V.pp"=0; examples ; geodetics on a sphere, and on an arbitrary cylin-
der, cone, and surface of revolution ; VARIATIONS IN QUATERNIONS; for-
mula for the differential of the tensor of an arbitrary vector o, dTe =
_§.Usds=8.Ug-1dc; this result will be extended in §cr; dd= dé,
&= J3 ; the variation of the length of the are of a curve, on any given
surface, is expressed by the formula,

3 Tdp = [0Tdp =— AS. Udpdp + S (dUdp.. 0p);

hence the varied equation of the surface being S . ¥0p = 0, the general diffe-
rential equation of a shortest line is V. »vdUdp =0, as above; equations
of limits ; for a geodetic on an ellipsoid, with the same significations of
and » as in § LXXX., if Tdp be assumed as constant, the differential equa-
tion of the geodetic becomes,
0o g
2fdp v
this reproduces the well-known theorem of Joachimstal, P. D) =const.,
because Ty = P-1, and V(fUdp) = D -, if P be the perpendicular letfall
from centre on tangent plane, and D the semidiameter parallel to the ele-
ment dp ; geodetic on a developable surface ; proof of the rectilinear form
which the curve assumes, when the surface is flattened into a plane ; the
general theorems of Gauss, respecting the spheroidical excess (or defect) of
a geodetic triangle on an arbitrary surface, admit also of being proved by
quaternions (see the investigation in § ovi.) ; reproduction of some geome-
trical properties, discovered by M. Delaunay, of the curve which on a given
surface, and with a given perimeter, includes the greatest area ; it is pro-
posed to name a curve of this kind a Dipoxia; the isoperimetrical for-

, and gives Tv V( fUdp) = const. ;

mula for its determination is

[S. Urdpbp + ¢d{Tdp =0,
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w hich gives the following differential equation of a Didonia,
¢-1dp=V.UrdUdp ;

yeodetics ave that limiting case of Didonias, for which the constant ¢ is
infinite ; in general, that constant may have its expression in various ways
transformed, and may receive various geometrical interpretations ; among
which the most remarkable is connected with the known property of the
curve, that if a developable surface be circumscribed about a given surface,
so as to touch it along a Didonia, and if this developable be then unfolded
into a plane, the curve will at the same time be flattened generally into a

circular arc, of which the radius =¢, . Articles 579 to 590 ; Pages 575 to 584

c1. More close examination of the logic (compare § xc1x.) of the process of dif-

§ o

ferentiating the equation of a surface, and so obtaining the equation of its
tangent plane, and the normal vector v, without necessarily supposing for
that purpose the differential dp to be small ; differential of a function of a
Sunction of a quaternion; df (¢q)=4d (fp) ¢ ; examples of the process ;
case of the ellipsoid ; differentials of the tensor and versor of a qua-
ternion, and of their logarithms: dTq=1S.dqUq-1, dlTg=S8.dqq"!,
dlUg =dUqUg-1'=V. dgq-1; incidental notice of the general transfor-
mations, 71 (r2g?)% g-1= U (Sr 8¢ + Vr Vg) = U (rq + KrKq) ; by in-
verting the function which expressés (see § LXXIX.), the normal vector v
for the ellipsoid in terms of p, we find

p=(@+k2)v—2V.wk+4 (e—«) 2V, S . v ;
hence the equation of that other and reciprocul ellipsoid, on which v ter-
minates, may be thus written,
1=S.vp=(2+r)v2-28 . wev+4 (1~ k) 2(8. wr)?;

the mean semi-axis of ¢his reciprocal ellipsoid isb-1 (contrast § Lxxx1v.);
in general, the locus of the extremity of the vector of proximity (see
§ xc1x.), for any surface, may be very simply proved to be (as is other-
wise known) a surface reciprocal thereto, by shewing that the equations

S.vp=¢, S.vdp=0, give S. pr=¢, S.pdv=0,.

Articles 591 to 597; Pages 584 to 588.

More close examination of the extension (§xcviL) of Taylor's Series to
quaternions ; proof that whenever the quaternion function f (g + 27) can
be developed, in a finite or infinite series, of the form fy + zfi + 22f, + &c.,
x being a scalar, we must have drfg=An02f,, if dg be treated as con-
stant, and = r; other proof of this theorem, under the form that if
f(q+2dg)=fo+ af1 + 22fs + &e., then nf,=df, 1 5 proof that if we sup-
pose the n first of the successive differentials of the function of fg to be
finite, and if & be supposed small of the first order, then the expression s, ==

i 1 .
g+ adq) ~ fq—xdfg — Jx2d3fg~ . . — mr"d’ffq is small of an

order higher than the nth; or that not cnly the expression s, itself, but
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its n first successive differential coefficients, taken with respect to z, va~
nish with that scalar variable; it is to be remembered that ¢ and dgq are
treated throughout this section (compare § xcv1n.) as two arbitrary quater-
nions ; and that Tdq is not here supposed to be small, although in geome-
trical applications it is often convenient to attribute small values to Tdp;
example from the equation of the elfipsoid, which may be rigorously de~
veloped under the finite form, 0 =f(p + dp) — fo = dfp + 3d%fp, dp denoting
an arbitrary chordal vector, drawn from the extremity of p, to any other
point of the surface, . . . . . . Articles 598 to 601; Pages 588 to 592.

§ cur. When dp is thus treated as a finite and chordal vector, the equation
0=dfp + 4d%fp, or 0=28.2dp+ 8. dvdp,

or the same equation with an additional term §.vdp 8. @dp, where &
is an arbitrary vector, represents an ellipsoid, or other surface of the se-
cond order, which osculates in all directions to the given surface fp =
const., or has with it complete contact of the second order, at the extre-
mity of p; if o be the vector of the centre of the sphere which osculates

to the surface in the direction marked by the limiting value of Udp, then
d

p—Ld =85 é)’, the second member being regarded as a function of this va-

lue of Udp; applied to the ellipsoid, this formula reproduces the known

expression D?. P-1, as the value for T (p — ¢), or for the radius of cur-

vature of a normal section of the surface, . . . . . . . . . . .
Articles 602 to 606; Pages 592 to 596.

§ civ. For any surface, S. ddvdp =S .dvddp, if in forming dv we operate only
on dp, but not on p itself, as contained in the expression of ds; hence it
may be inferred that the directions of osculation of the greatest and least
spheres, determined by the formula JS.dvdp-1=0, are also the directions
of the lines of curvature, for which consecutive normals intersect, and
which have for their differential equation 0=5. vdvdp; this latter equa-
tion expresses that dp 1 iV.vdy, and therefore contains one of the theo-
rems of Dupin, namely, that the tangent to a line of curvature on any sur-
face at any point is perpendicular to its conjugate tangent ; equations of
the indicatriz, S.vdp=0, S. dwdp = constant ; the equation of the lines
of curvature may also be thus written, 0=3S.dw»éUdp; or thus,
0=V.dpdUyp; thislast form contains a theorem of Mr. Dickson, that if
two surfaces cut along a common line of curvature, they do so at a con~-
stant angle ; transformation of the equation of § curr, for the curvature
of a section of a surface,

v vi?p v

e—p = dpr  w—p

conducting to the theorem of Meusnier; other general transformation and
interpretation of the formula of § c11., for the curvature of a normal sec-
tion ; if on the normal plane cP¥' to a given surface, containing a given
linear element PP, we project the normal to the surface at the near point,
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¥, this projected normal will cross the given normal cp, which is drawn
at the given point P, in the centre ¢ of the sphere which osculates to the
surface along the element, . . . . Articles 607 to 612; Pages 596 to 601.

§ cv. Considering the vector p, of a variable point on any surface, as a function,
=1y (a,y), of two scalar variables, x and y, which are themselves re-
garded as functions of some one independent and scalar variable, we may
write,

dp=pdz+pdy; dp'=p'dz+p/dy; dp,=p/dzr+p,dy ;
d2p = p'da?+ 2p dzdy + p dy2 + p'd2x + p d2y ;
oy ps P’y Py p, being five new vectors;

itis allowed to write »=V. p'p, because p’ and p, are tangential, and there-
fore the » thus found is normal; in the expression for §.w»d%e, d%r and
d?y disappear; and if we make Uy (6 — p)-1=R-1, so that R is the ra-
dius of curvature of a normal section, of which ¢ is the vector of the centre
of curvature, we shall have, by § civ., an equation of the form,

0=R-1dp2—8.Urd2% = Adx2+ 2Bdady + Cdy?;
for a line of curvature, we have
0 = Adz + Bdy = Bdz + Cdy, and therefore AB —~ C2=0,

where
A=R1p2-8.0'Uy, B=R-18.0p,~8.p/Uy, C=R-1p2-8.p Uy;

Ry, R, being the two extreme radii of curvature, the MEASURE OF CURVA-
TURE of the surface may be thus expressed,

" g
Rl'1R2‘1=S;P—Sﬂ'— ( Se") ;
v v v

example ; deduction of the usual formula, (rt—s2) (14 p2+4¢%)-2; in
general if e=— 0%, f=—8.p'p, g=—p2, sothat the square of the length
of a linear element of the surface has for expression

Tdp? = edz? + 2fdxdy + gdy?,

the recent expression for the measure of curvature is shewn to depend only
on the three scalars ¢, f, g, on their six partial differential coefficients of
the first order, and on three of their nine partial differential coefficients of
the second order, taken with respect to z and y; in this way is reproduced
by quaternions a very remarkable theorem of Gauss, namely, that if a sur-
Jface be treated as an infinitely thin and flexible, but inextensible sorip,
and be then TRANSFORMED as such into another surface, such that each
LINEAR ELEMENT of the new is equal in length to the corresponding ele-
ment of the old one, the MEASURE OF CURVATURE at each point will NoT
BE ALTERED by this TRANSFORMATION, . Ce e e e e
Aurticles 613 to 615; Pages 601 to 604.

§ cvi. If z denote the length of the geodetic line A, drawn on the surface from a
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fixed point A, and if y denote the angle BAP which the variable geodetic
Ar makes there with a fixed line AB, then

p?=—1,8.pp=0,0re= 1, f=0,
and these equations may be differentiated ; hence if we make m=Vg="Tp,
the general expression for the measure of curvature reduces itself to the
following, which (with a somewhat different notation) was first discovered
by Gauss,

R"\Ryl=—m'm-1; or, B-1Ry-1=d2Tdp < (dp2Tép);

treating = and y as functions of the arc s of a new geodetic on the surface,
not drawn from the fixed point A, and denoting by v the angle between an
element ds or PP of this new geodetic, and the prolongation of the old geo-
detic line Ap, the differential equation of the new geodetic becomes,

2’ =mmy?, or ¥ =—mly, or do=—mdy;
we may also conveniently write, in a slightly modified notation,
Sv=—mdy, or fv=—dTdp < Tdp,

d referring here to motion along the original geodetic AP, and { to passage
from that line to a near one; ddv, or —m'dzdy, is then a symbol for the
spheroidical excess (compare § ¢.) of a little geodetic quadrilateral, of
which the area = mdzdy ; dividing the excess by the area, we find the quo-
tient =— m"m-1 =the measure of curvature of the surface; but also this
measure = R~ 1Ry 1=V . dUp0Up -~ V. dpdp =the area of the corres-
ponding superficial element of the unit-sphere, divided by the element of
area of the given surface, this correspondence consisting in a parallelism
between radii and normals ; hence, as Gauss proved, the TOTAL CURVA-
TURE of any small or large closed figure, on any arbitrary surface, bounded
by geodetic lines, or the area of the corresponding portion of the surface
of the unit-sphere (not generally bounded by great circles), is equal
(with a proper choice of units) to the SPHEROIDICAL EXCESS of the figure ;
singular points are here excluded, and the sign of the element of the sphe-
rical area is supposed to change, when we pass from a convexo-convexr to
a concavo-convex surface, . . . . Articles 616 to 619; Pages 604 to 609.

§ cvir. Many other geometrical applications of differentials of quaternions might
easily be given; for instance, they serve to express with ease what M.
Liouville has called the geodetic curvature of a curve upon any surface;
they may also be employed to calculate the normal and osculating planes,
and the evolutes, torsions, &c. of curves of double curvature ; transforma-
tions of the symbols <4<, <2, where

id ja kd, dd jd A4

=da:+dg/+

bl

PP Sl PO s ”

ayzxyz being six independent and scalar variables ; the formule,

A

dt  du dv )

4(2‘[ +ju+ l:v):-—(d—-x 4733—/ + Ez_
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+i dv du)+. dt  dv k du_,‘d_i
N\ &/V\e @)\ &E )

Ty o o
de? ' dy? ' d22 '
appear likely to become hereafter important in mathematical physies;
— < v may represent the flux of heat, if v be the temperature of a body ;
or if v be the potential of a system of attracting bodies, then < v repre-
sents, in amount and in direction, the accelerating force which they exert
at the point xyz; in geometry, the vector < v is normal to the surface for
which the scalar function v = constant; when operating on such a fune-
tion,

q=-(8.dp)1q, . . . . . . . . .

Article 620; Pages 609 to 611.

§ cvir. Applications of quaternions to physical astronomy ; the vector function,
¢pa=a-1Ta-}, may be called the TRACTOR of @, because it represents, in
length and in direction, the accelerating force of attraction which an unit
of mass at the origin exerts on a point placed at the end of the vector of
position, a ; by the rules of this calculus, this function may be thus trans-
formed,

¢pa=A4Ua-~V.ada=(Ua)+V. ad’;

the differential equation of motion of e binary system, da= M¢padt?, or
a"= Mga, gives the following integrals of the first order, V.aa'=7,
o= My-1(¢—Ua), where y and ¢ are constant vectors, but « is a varia-
ble vector ; the first contains the laws of constant plane and area, and the
second contains the LAW OF THE CIRCULAR HODOGRAPH ; eliminating the
vector of velocity, «/, we obtain this equation of the orbit, 0 =Ta + 8. as
+M-1y2, or r-1=p-1 (1+ecosv), agreeing with a well-known result
respecting the conie-section form of the curve, and foeal character of that
body about which the other is conceived to move; the varying tangential
velocity of this latter body may be decomposed into two parts, both con-
stant in amount, and one constant also in direction ; theorem of HODO-
GRAPHIC ISOCHRONISM, corresponding to Lambert’s theorem ; allusion to
a conception of Moebius; the difference ¢ (a + Aa) — ¢a, or A¢a, of the
tractor function ¢a, might perhaps be called the TURBATOR, becausc it
expresses, with Newton’s law, the amount and direction of the disturbing
Jforce which an unit-mass, supposed to be situated at the common origin
B of the two vectors a and a4 Aa, exerts on a body A situated at the end
of the latter variable vector, to disturb its relative motion about a body ¢
at the end of the former vector ; developement of this disturbing force,

under the supposition that TAa <Ta, or that the distance b =ca, of the
disturbed body A from the centre c of the relative motion, is less than the

distance a = BC of the disturbing body B from the same centre ; example,
where A, B, ¢ denote moon, sun, and earth ; we have the transformation,

¢ (B+a)=(1+9) 3 (1 +¢)- 3¢, if g=Ba"), y=Kg=a"1f3;
q
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hence results a developement of the form ¢ (8 + a)==,, »' ¢y, in
which the law of formation of the terms is assigned; the sun’s disturbing
force on the moon is in this way seen to admit of being decomposed into a
series of groups of smaller and smaller forces, in the varying plane of the
three bodies, represented in amount and in direction by the terms of this
developement ; if a, b denote the geocentric distances of the sun and moon,
and C their geocentric elongation measured from the sun towards the
moon in their common great circle in the heavens, then the angle from the
sun’s geocentric vector — a to the component force ¢y, n is = (n — ) C,
and the intensity of the same partial force is =my, »* (Ba-1)n+7 a-2, my, »*
being an assigned and rational numerical coefficient; in the first and
principal group, there are fwo component forces, of which one, ¢, o, has its
intensity = 3ba -3, if the sun’s mass be taken for unity, and is directed along
the moon's geocentric vector 3 prolonged, or towards the moon’s apparent
place in the heavens, while the other, go, 1, has an exactly triple intensity,
and is directed towards what may be called a fictitious moon, or to a
point which i3 a sort of reflexion of the moon’s place with respect to the
sun; the second group contains three partial forces, which may be said to
be directed towards three suns (one real and two fictitious), and the in-
tensities of these forces, taken in a suitable order, are exactly proportional
to the whole numbers 1, 2, 5 ; these results may be indefinitely extended,
and applied to the perturbation of an inferior by a superior planet, &e. ;
some of these and other results of the application of quaternions to mecha-
nical or physical problems, such as the conditions of equilibrium, the
theory of statical couples, and the motion of a system’of mutually attract-
ing bodies, were communicated to the Royal Irish Academy in 1845 ; the
present writer has since made other physical applications of the same prin-
ciples, and has published some of them, but is aware that nothing impor-
tant in that way is likely to be done, until the more full co-operation of
other and better mathematicians shall have been gained, .. .
Articles 621 to 624; Pages 611 to 620,

§ cIX. A DEFINITE INTKGRAL in quaternions may be interpreted as a limit of a
sum ; but, even when the function to be integrated remains finite between
the limits of integration, still if the differential factor dg under the sign of
integration be itself essentially a quaternion, then a certain degree of in-
determination of value of the quaternion integral jZ:F (g, dg) arises from
the possibility of assuming indefinitely many different laws of dependence
of the variable quaternion g on a scalar variable #, which latter may be
supposed to change from 0 to 1, while ¢ changes from one given quater-
nion value go to another ¢y ; in this way arises a new sort of variation of
a definite integral, depending on the non-commutative character of multi-
plication, which may be symbolized by the formula,

20=2 1 P(q, a9) = [ 4327 (2, 49) ~ P (g, 0]
for example,
3ffqdg=((3fg.dg~dfg . 8g), if 3qo=0, dq1=0;
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more particularly,
1 1
B quqdq = 6J qt qtldt =J (Bqtq/— q,’&q,) dt,
9o o o

the integral relatively to ¢ being interpreted as the limit of a sum; exam-
ples of different functional forms which may be assumed for gt and of the

different quaternion values thereby obtained for the integral J.qlqdq;this
90

sort of variation of a definite integral vanishes, as in the ordinary integral
calculus, when the function F (g, dg¢) is an ezact differential ; for exam-
ple, although, between given quaternion limits, the integrals of gdg and
dqq are each separately subject to the kind of indetermination above ex-
plained, yet the integral of their sum is fixed, and we may write, defi-
nitely, as in algebra,

j:; (gdg +dgq) = 912~ go?;

analogous remarks would apply to such expressions as

r 1
R= rOJZO F(g,r dg, dr);

if the subject of this section shall be hereafter pursued, it will be proper to
combine it with the researches of M. Cauchy, respecting definite integrals
taken between imaginary limits of the ordinary kind, and respecting that
other species of indetermination, which arises from the passage of func-

tions through infinity, and not from any supposed absence of the commu-

Ixv

tative property of multiplication, . . Articles 625 to 630 Pages 620 to 627.

§ ox. Differentiation of implicit functions, and of radicals ; examples; if Sa de-

§ cx1.

note any scalar function of a scalar variable x, and if dfr = f'zdz, then
in passing to guaternions, we have V.VqVfy=0; if also we suppose UV,
=+UVgq, and denote by dg — 0q that part of dq which is a vector per-
pendicular to Vg, we shall have, under these conditions, the formula drq
=fq8q +TVfy.dUVq, which may be in various ways transformed, and
gives the equation,

Vadfy +dfgVq=1q (Vgdq + dgVg);

connexion of differentials and developements with equations of the Sirst
degree ; to find the differential of the square root of a quaternion r, we
are by § xcv1IL to resolve the equation gdg + dgq = dr, which is of the
same form as the equation bg + ¢b = ¢, discussed in § xcvIn ; and a se~
ries of equations of this linear form may be employed to develope the
square root of a sum, in a quaternion series, of the form

B2+ Y=b+q 4+ qat ke,

Articles 631 to 635 ; Pages 627 to 631.

Quadratic equations in quaternions (compare § xcvt.); an equation of
the form g2 = qa + b, or of this connected form, #2=qar + b, where abgr are

1
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quaternions, and g + r =@, ¢r =~ b, has in general s1x roorts, of which
two are real, and four imaginary ; the determination of these six quater-
nion roots depends on a scalar equation of the sizth degree, which is of
cubic form ; the scalar and cubic equation thus obtained has in general
one positive and two negative roots; case in which one root of the cubic
vanishes; examples of the above form of a quadratic equation in quater-
nions,
9*=0qi + 10j, g?=qi+j;

more general example, g2 = ga + B, where a and 3 denote two rectangular
vectors, Sa=0, S8=0, S.aB8=0; the six quaternion roots of this last
quadratic are given by the three formulz,

L g=}atalftial(att 460
w g=4(1+UB){ax (e 2TH)E},
nr g=4 (1-UB) {at (>~ 2TB)}},

in which it is to be remembered that aB=— Ba,so that the ordinary rules
of algebra are not all applicable bere (§§ x., x1., &¢.) ; by the peculiar
rules of the present calculus, it is easy to shew that the common value of
q2 and ga+ 3 is, for the first formula,
Jar s} (at+4p0H
each of the other two formulee may also be shewn, & posteriori, to give
equal values for the two quaternions g2 and ga + 3; the third formula
gives always two imaginary values for g ; but, according as at+ 432 < or
> 0, we shall have two real quaternions from the second formula, and two
imaginary vectors from the first, or two real vectors from the first, and
two imaginary gquaternions from the second expression ; in the former case,
the two real quaternion roots of the gnadratic equation have a common
tensor =VTg3; in the latter case, the two real vector roots have unequal
lengths, or tensors, but VT3 is still the geometrical mean between them ;
the distinction between these two cases corresponds (compare § LXXVIL.)
to the imaginariness or reality of the intersections of the sphere, p2==§. ap,
and the right line, V. ap = (3 ; the IMAGINARY QUATERNIONS considered in
the present section (compare § XcvL) are all reducible to the form, ¢ =g’
+¢'V —1, where ¢’ and ¢ are quaternions of the real and ordinary kind,
such as have been hitherto considered in these Lectures, and V — 1 is the
old and ORDINARY IMAGINARY SYMBOL of common algebra, and is to be
treated, in this sort of combination with the peculiar symbols, (F#, &c.)
of the present calculus, not as a real vector (contrast the earlier use of
the same symbol in § xxxv.), but as an imaginary scalar ; an expression
of this mixed form, ¢+ V — 1 ¢, is named by the writer a BIQUATERNION ;
the study of them will be found to be important, and indeed essential, in
the future developement of this caleulus, . . . . . . . . . .
Articles 636 to 650 ; Pages 631 to 643.

§ oxm. Application of the foregoing principles, to continued fractions, of the
form
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b\=z
(2T

where ¢, b, and ¢ (=) are any three given quaternions, and z is a posi-
tive whole number ; making

V= (ux + 92) (uz + QI)_ Y

we have o;= ¢2% v9q1~*, where qi, g, are any two roots of the quadratic
equation ¢2= ga + b ; examples,

Lz —'_j—z IOj x ﬂ 2 .
(i+)0’ (H)c’ (Eﬁ)c (a_+)‘°°’

in the two first of these four examples, the continued fraction has gene-
rally a period of siz values, which may be found at pleasure by employing
the two real quaternion roots of the quadratic equation ¢2= i + j, namely,

=5 (1+i+tj—8) =3 (~1+i—j—4);
or two conjugate imaginary solutions of that quadratic, such as the pair
qu=zi—k, qz=2"1i—k where 2 =(cos + Y— 1 sin) g, Y= 1 being the old

imaginary symbol (compare § cX1.); or the other pair of imaginary roots
of the same quadratic equation, included in the expression,

g=4(E+R)+3(1-j)V-3;

or by any other selection of two roots, for instance, by combining one real
and one imaginary root ; the six real quaternion terms of the period, found
by any of these combinations of roots, agree with those obtained by ac-
tually performing the divisions prescribed by the form of the continued
fraction ; in the third example above cited, of such a fraction, the value
does not circulate, but (generally) converges to a limit, so that

(—_l_ﬂ)wczﬂz—i, unless ¢=24 —41;
Bi4

in this last case, and also in the case when ¢ = 2% ~1, that is, when c is a
real root of the quadratic ¢2 + §ci=10j, the value of the fraction is con-
stant ; geometrical interpretations, for the case where ¢ =iz + k2o, o and
zo being regarded as the coordinates of an assumed point Py in the plane
of ik (or x2) ; successive derivation of other points pi, Py, &c., according
to a law assigned ; if the assumed point be placed at either of two fived
points Fy, Fo, in the same plane of ik, its position will not be changed by
this mode of successive derivation ; but if pg be taken anywhere else in the
plane, the derivative points will indefinitely tend to the fixed position ¥y,
$0 that we may write

r, Fa=0, P, =F; unless pp=Fy;

law of this approach ; continual bisection of the quotient, PF, =~ PFy, of
the distances of the variable point P from the two fixed points; theorem of

! the two circular segments, on the common base ¥1Fz, and containing the
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two sets of alternate and derivative points, Py, Ps, Py . . and Py, P3, Ps . .
to infinity ; verification by co-ordinates ; relation between the two segments;
more general geometrical theorems of the same kind, obtained as interpre-
tations of the results of calculation with quaternions, respecting the fourth
example ofa continued fraction above mentioned, with the supposition that
B is a vector perpendicular to a and to po, and under the condition

a'+4(32> 0 (see again § cxvr.);

interpretation of this condition ; when at+ 432 < 0, there is no fen-
dency of the variable point to converge to any fixed position ; the quadratic
@ =qa+ B (of § cx1.) gives

gt =q2a2+ 1821 (2117 - a2)2 =qal4 4[32;

but when at + 432 =0, the biquaternion solutions of the quadratic give,
indeed, like the real roots,

(242 — a?)2= 0, but not, like them, 2¢2—a2=0;

those solutions give in this case 2¢2 — «® = 48¢Vq, Vg=p' +V-1 0"
where o' and p” denote two real and rectangular and equally long vec-
tors; and the square of such an expression vanishes, without our
being allowed to equate the expression itselfto zero ; algebraical interpre-
tation of the general results at the commencement of this section, divested
of quaternion symbols, and connected with a functional law of derivation
of four scalars from four other sculars arbitrarily assumed, and from
eight given and constant scalars ; the indefinite repetition of this process
of derivation conducts generally to one ultimate or limiting system, of four
derivative scalars, . . . . . . . Articles 651 to 668; Pages 643 to 664.

§ cxur. A biguaternion may be considered generally asthe sum of a biscalar and
@ bivector ; we may also conveniently introduce biconjugates, bitensors,
and biversors, and establish general formule for such functions or combi-
nations of biguaternions, whieh shall be symbolical extensions of earlier
results of this calculus; thus, in any multiplication, the bitensor of a pro-
duct can ouly differ by its sign from the product of the bitensors ; there
exists an impertant class of biquaternions, for which the bitensors vanisk;
such biquaternions may be called nullific, or nullifiers, because each may
be associated (indeed in infinitely many ways), as multiplier or as multi-
plicand, with another factor different from zero, so as to make their pro-
duct vanish (compare § cX11.); general expressions for the reciprocal ofa
biguaternion ; the reciprocal of a nullifier is infinite; a real quaternion has
generally a pair of imaginary, as well as a pair of real square roots ; hints
respecting the geometrical wtility of the biquaternions, in transitions (for
example) from closed to unclosed surfaces of the second degree, and in
other imaginary deformations ; reference to a proposed Appendix to these
Lectures, containing a geometrical translation of an investigation so con-
ducted, respecting the inscription of gauche polygons, in ellipsoids, and
in hyperboloids, . . . . . . . Articles 669 to 675; Pages 664 to 674.
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§ cxiv. Brief outline of the quaternion analysis employed in such researches res-
pecting the inscriptions of polygons in surfaces (with which are connected
other problems respecting the circumseriptions of polyhedra); equation of
closure, resumed from § Lv. ; distinction between the cases of even-sided
and odd-sided polygons; if it be required to inscribe in a given sphere, or
other surface of the second order, a gauche polygon with an odd number
of sides, passing successively through the same number of given points,
there exists in general one real chord of solution, determining two real
OR imaginary positions of the initial point of the polygon; but, if
the polygon be even-sided, there are then (for the sphere, ellipsoid, or dou-
ble-sheeted hyperboloid) two real chords of real AND imaginary solution;
for the single-sheeted hyperboloid (see Appendix), these two chords may
themselves become imaginary; in geueral they are reciprocal polars of
each other ; thus there may in general be inscribed, in a surface of the se-
cond order, two real or two imaginary gauche polygons, with an odd num-
ber of sides, passing through as many given and non-superficial points;
whereas, if the surface be non-ruled, and if the number of points and sides
be even, there may in general be inscribed two real, and two imaginary
polygons, which become all four real, or else all four imaginary, when we
pass to a ruled surface ; if we conceive that the inscribed gauche polygon
PPl . .. P, has n 4 1 sides, of which only the first n are obliged to pass
through so many given and non-superficial points, Ay, ... A,, then the
closing side, or final chord, P,P, belongs to a certain system of right lines
in space, of which it is interesting to study the arrangement ; quaternion
formule connected therewith; when the number 2 of the given points is
even, %0 that the number n+1 of the sides of the polygon is odd, the
closing chords touch two distinct surfaces of'the second order, which have
quadruple contact with the original surfuce, and with each other, and are
geometrically related to each other and to the given surface, as are three
single-sheeted hyperboloids which have two common pairs of generatrices ;
when the number of the given points is odd, or of the sides of the polygon
even, then the envelope of the closing side consists of a pair of cones, which
are imaginary if the given surface be non-ruled, but may become real by
imaginary deformation, namely, by passing to the case of inscription in a
ruled surface; in this last case, the lines on the surface, which are analo-
gous to lines of curvature, as being those linear loci of the initial point p,
which are bases of developable surfaces composed by corresponding sys-
tems of positions of the variable chord PPy, are rectilinear generatrices of
the given surface ; these bases become imaginary, when we return to the
sphere, ellipsoid, or other non-ruled surface, as that in which the polygon is
to be inscribed ; when the number of given points is even, the tangents to
the two corresponding curves on the given surface, at any proposed point
P, are conjugate, being parallel to two eonjugate diameters; there exist
also certain harmonic relations between the lines and planes which enter
into this theory of inscription ; references to communications by the pre-
sent writer, on this subject, of which some have been already published,
(sce also Appendix B), . . . . . Articles 676, 677; Pages 674 to 678.
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§ cxv. More full discussion of the signification of an equation, namely,
V. pa=pV.pB, or V.ap=pV. 3o,

which had presented itself in the foregoing analysis ; this equation repre-
sents generally a certain curve of double curvature which is of the third
order, as being cut by an arbitrary plane in three points, real or imagi-
nary ; this curve is the common intersection of a certain system of surfaces
of the second order ; it intersects the sphere p2=— 1 in fwo real and two
imaginary points, namely, in the initial positions of the first corner of an
inscribed and even-sided polygon (§ cx1v.), but it may be said also to in-
tersect the same sphere in two other imaginary points, at infinity ; if we
confine ourselves to real vectors and quaternions, we can express a variety
of other geometrical loci by equations of remarkable simplicity ; interpre-
tations of the ten equations,

9=0,9=1,9=—-1,Tg=1, Ug=1, Cg=-1,
Vg=0, 8¢g=0, 8¢=1, 8¢ =—1, where ¢ = (pa-1)2;

with the same meaning of ¢, if 3 4 a, the equation Vg =0 represents a
certain hyperbola ; if aBy denote three real and rectangular vectors, the
equation (yV. ap)?+ (yV. 8p)2 =1 represents a certain ellipse; the equa-
tion (S. ap)*+ (yV. ap)2=1 denotes the system of an ellipse and an hy-
perbola, with one common pair of summits, but situated in two rectan-
gular planes ; an equally simple equation can be assigned representing a
system of two ellipses, in two rectangular planes, having a common pair of
summits ; the equation tprp = pxpt, or V. tpkp =0, represents a system of
two rectangular right lines, bisecting the angles between ¢, «; while the
equation tpip = ptpk, or 0=V. pV. 1ok, represents a system of three rect-
angular lines, namely, these two bisectors, and a line perpendicular to
their plane; example from the ellipsoid, equation V. »p = 0; general equa-
tion of surfaces of the second order; equation of Fresnel's wave-surface ;
general formule for translating any equation in co-ordinates into an equa-
tion in quaternions,

r=—iS.i0, y=~4S.jp, 2=—kS . kp;

other expressions for geometrical loci may be obtained, by regarding p as
the vector part of a variable quaternion g, which is obliged to satisfy some
given equation, while its scalar part w is variable; formule may be as-
signed which shall represent, respectively, on this plan, what may be called
a full cirele, and full sphere, . . . . Articles 678, 679 ; Pages 678 to 688.

§ cxvi. Equation of the focal hyperbola, V. np .V. p6= (V. 56)? resumed from
§ LXXXVIIL ; proof of the adequacy of this one equation to represent that
curve ; geometrical illustrations of the significations of the two constant
vectors 7 and 8 ; they are the two oblique co-ordinates of an wmbilic of
the ellipsoid, referred to the asymptotes of the focal hyperbola, when di-
rections as well as lengths are attended to; other elementary geometrical
illustrations and confirmations of some of the results of earlier sections (es-
pecially of §§ LxxxvI. to LxxxVIL), chiefly as regards the equations in-
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volving #, 8 additional calculations and interpretations, designed princi-
pally as exercises in quaternions; introduction of the two new vectors,

M=p-2(n+8)18.0p, e=2V. 50T (y+6)"},

with three other vectors Ay A, Ay, determined in terms of p by expres-
sions analogous to that for A;; we have the equations,

T —&)=b+b18.6p, T(\1+£)=b—-0"18.¢p,
and therefore T (A1 —¢) + T (A1 + ¢) =2b;

the locus of the extremity of the derived vector A, is a certain ellipsoid of
revolution, with the mean azis 2b of the given ellipsoid for its major axis,
and with fwo foci on that axis of which the vectors are + & if e de-
note the linear excentricity of this new ellipsoid, e = Ts, then

= (a2 —B2) (B2 —c2) (a% — B + )1

the four vectors, A1, A, Ag, A4 terminate at four points, Ly, Ly, Ly, Ly, which
are the four corners of a quadrilateral, inscribed in a circle, of this de-
rived ellipsoid of revolution ; the two opposite sides, LiL,, LyLy, of this
plane quadrilateral, are respectively parallel to the two umbilicar diameters
of the original ellipsoid abe ; the fwo other and mutually opposite sides,
Lalg, Lyl of the same inscribed quadrilateral, are parallel to the axes of
the two cylinders of revolution which can be circumscribed about the same
given ellipsoid (or to the asymptotes of the focal hyperbola) ; the former
pair of sides of the inscribed but varying quadrilateral intersect in a point
E (the termination of the vector p)s of which the locus is the given ellip-
soid; for this and for other reasons it is proposed to name the new ellip-
soid of revolution the MEAN ELL1PSOID, and its foci the TWoO MEDIAL FOCI
of the given ellipsoid abe, . . . . Articles 680 to 688; Pages 688 to 700.

§ cxvi.* Many other geometrical applications may be made, of the same general
principles ; for example, if 7 be a vector tangential to a line of curvature,
then, with the significations of ¢, k, » in §§ LxXVIIL, LXXTX., we have the
equations,

S.vr=0,8.vrure=0, giving r=UV. 2 FUV. vx;

this reproduces the known theorem, that the lines of curvature on an ellip-

soid bisect at each point the angles between the circular sections ; quater-

nions may also be employed to prove some theorems elsewhere published

by the present writer, respecting the curvature of a spherical conie, . . .
Article 689 ; Page 700.

ApPENDIX A (referred toin §ext), . . . . . . . . . Pages 701 to 716.
APPENDIX B (respecting the results of §ox1v.), . . . . . . Pages 717 to 730.
ArpExDIx C (containing some additional account of the analysis by which some

of those results were obtained), . . . . . . . . Pages731 to the end.

[* The foregoing Analysis of the work into Sections did not occur to the author until it was too
late to be incorporated with the text : but it has been printed here, as seeming likely to be useful.
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REFERENCES TO THE FIGURES.

Figure. Article. Page. Figure. Article. Page,
1 7 [ 52 269 258
2 8 8 53 272 261
3 9 9 54 273 —
4 —_ — 55 277 265
5 12 12 56 280 267
6 53 44 57 281 268
7 — —_ 58 294 278
8 57 49 59 298 282
9 59 52 60 299 283

10 60 53 61 300 284
11 68 62 62 301 285
12 —_— —_ 63 — 286
13 —_ — 64 —_ —_
14 74 68 65 302 287
15 81 77 66 320 306
16 — —_ 67 323 809
17 87 85 68 524 310
18 94 93 69 325 312
19 97 97 70 330 316
20 —_— 98 1 332 318
21 98 99 72 333 319
22 103 107 73 335 320
23 106 110 74 342 827
24 117 123 75 343 329
25 119 125 76 345 330
26 131 144 77 347 332
27 132 147 78 353 837
28 — —_ 79 361 847
29 137 154 80 381 369
30 181 190 81 393 380
31 183 193 82 402 387
32 186 194 83 404 389
33 199 201 84 405 390
34 — 202 85 406 391
35 — — 86 412 398
36 217 213 87 414 400
37 219 214 88 415 401
38 222 217 89 — —
39 223 218 90 422 408
40 224 — 91 427 416
41 227 222 92 434 425
42 236 228 93 437 430
43 242 235 94 445 440
44 253 243 95 457 457
45 254 244 96 459 459
46 256 245 97 463 464
47 257 246 98 466 467
48 — —_ 99 467 470
49 —_— — 100 493 499
50 264 253 101 530 538
51 266 265 102 681 691






