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THE word quaternionproperly means‘a setof four” In emplg/ing sucha
word to denotea new mathematicalmethod,Sir W. R. Hamilton was probably
influencedby the recollectionof its Greekequivalent, the PythagorearTetractys,
themysticsourceof all things.

Quaterniongasa mathematicamethod is an extension,or improvement,of
Cartesiargeometryin whichtheartificesof coordinateaxes,&c., aregotrid of, all
directionsin spacébeingtreatedon preciselythesameterms.lt is therefore except
in someof its degradedorms, possessedf the perfectisotropy of Euclidianspace.

From the purely geometricalpoint of view, a quaternionmay be regardedas
the quotientof two directedlinesin space—or, whatcomesto the samething, as
thefactor, or opeiator, which changesonedirectedline into another Its analytical
definitioncannotbegivenfor themoment;it will appeain thecourseof thearticle.

History of the Method—The evolution of quaternionselongsin partto each
of two weighty brancheof mathematicahistory—theinterpretatiorof theimagi-
nary (or impossibl§ quantityof commonalgebraandthe Cartesiarapplicationof
algebrato geometry Sir W. R. Hamiltonwasled to his greatinventionby keeping
geometricabpplicationonstantlybeforehim while heende&ouredto give areal
significanceo v/—1. Wewill thereforeconfineourseles,sofarashispredecessors
areconcernedto attemptsat interpretationrwhich hadgeometricakpplicationsn
view.

Onegeometricainterpretationof the negative sign of algebrawasearly seen
to be merereversal of directionalonga line. Thus,whenanimageis formedby a
planemirror, the distanceof ary pointin it from the mirror is simply the negative
of thatof thecorrespondingointof theobject.Orif motionin onedirectionalong
aline be treatedaspositive, motionin the oppositedirectionalongthe sameline
is negative. In the caseof time, measuredrom the Christianera, this distinction
is at oncegiven by thelettersA.D. or B.C., prefixed to the date. And to find the
position,in time, of oneeventrelatvely to another we have only to subtractthe



dateof the second(taking accountof its sign) from that of the first. Thusto find
theintenal betweerthe battlesof Marathon(490B.C.) andWaterloo(1815A.D.)
we have

+1815— (—490) = 2305 years.

And it is obviousthatthe sameprocessappliesin all casesn which we dealwith
guantitieswhich may be regardedasof onedirecteddimensiononly, suchasdis-
tancesalonga line, rotationsaboutan axis, &c. But it is essentiato noticethat
this is by no meansecessarilftrue of opefators. To turn aline througha certain
anglein a given plane,a certainoperatoris required;but whenwe wish to turn it
throughan equalnegative anglewe mustnot, in general,emplo/ the negative of
the former operator For the negative of the operatorwhich turnsaline througha
givenanglein a given planewill in all casegproducethe negative of the original
result,whichis nottheresultof the reverseoperatorunlessthe angleinvolved be
anoddmultiple of arightangle.Thisis, of course pntheusualassumptiorthatthe
signof aproductis changedvhenthatof anyoneof its factorsis changed,—which
merelymeanghat —1 is commutatie with all otherquantities.

The celebratedVallis seemso have beenthefirst to pushthis ideafurther In
his Treatiseof Algebra (1685) he distinctly proposedo constructthe imaginary
rootsof a quadraticequationby going out of the line on which the roots, if real,
would have beenconstructed.

In 1804the Abbé Buéée, apparentlywithout ary knowledgeof Wallis's work,
developedthis idea so far asto male it usefulin geometricalapplications. He
gave, in fact, the theory of what in Hamilton's systemis called Compositionof
\ectoss in one plane—i.e., the combination,by + and —, of complanardirected
lines. His constructionsare basedon the ideathat the imaginaries++/—1 repre-
sentaunitline, andits reverse perpendiculato theline onwhichtherealunits+1
aremeasuredIn this senseheimaginaryexpressiora+ by/—1 is constructedy
measuringa lengtha alongthe fundamentaline (for realquantities)andfrom its
extremity aline of lengthb in somedirectionperpendiculato thefundamentaline.
But hedid notattackthe questionof the representationf productsor quotientsof
directediines. The stephetook s really nothingmorethanthe kinematicalprinci-
ple of the compositionof linear velocities,but expressedn termsof the algebraic
imaginary

In 1806(theyearof publicationof Bue2’s paper)Argandpublishedapamphlet

1Phil. Trans, 1806.

2Essai sur une manére de représenterles Quanties Imaginaires dans les Constructions
Geonetriques A secondedition was publishedby Houiel (Paris, 1874). Thereis addedan im-
portantAppendixconsistingof the papersfrom Gergonnes Annaleswvhich arereferredto in thetext



in which preciselythe sameideasaredeveloped,but to a considerablygreaterex-
tent. For aninterpretationis assignedo the productof two directedlinesin one
plane,when eachis expressedasthe sum of a real andanimaginarypart. This
productis interpretecasanotherdirectedine, forming thefourth termof apropor
tion, of which the first termis the real (positive) unit-line, andthe othertwo are
the factorlines. Argands work remainedunnoticeduntil the questionwasagain
raisedin Gergonnes Annales 1813, by Fran@is. This writer statedthat he had
foundthe germof his remarksamongthe papersof his deceasetrother andthat
they hadcomefrom Legendre who hadhimselfrecevedthemfrom someoneun-
named. This led to a letterfrom Argand,in which he statedhis communications
with Legendre,and gave a résung of the contentsof his pamphlet. In a further
communicatiorto the Annales Argandpushedon the applicationsof his theory
He hasgiven by meansof it a simple proof of the existenceof n roots, and no
more,in every rationalalgebraicequationof the nth degreewith real coeficients.
About 1828Warrenin England,andMourey in France,ndependenthof onean-
otherandof Argand reirventedthesemodesof interpretationandstill later, in the
writings of Cauchy Gaussandothers the propertiesof the expressiona+ by/—1
weredevelopedinto the immenseand mostimportantsubjectnow calledthe the-
ory of comple numbes. From the more purely symbolicalpoint of view it was
developedby PeacockDe Morgan,&c., asdoublealgebra.

Argands methodmaybeput, for referencein thefollowing form. Thedirected
line whosedlengthis a, andwhichmakesanangleb with thereal(positve) unitline,
is expressedy

a(cosb+ising),

wherei is regardedas ++/—1. The sum of two suchlines (formed by adding
togetherthe realandtheimaginarypartsof two suchexpressionsyan,of course,
be expressedasa third directedline—thediagonalof the parallelogranof which
they areconterminousides.Theproduct,P, of two suchlinesis, aswe have seen,
givenby
1:a(cosB+isind) :: & (cosd +isind’) : P,
or
P=ad{cog6+6')+isin(0+8)}.

Its lengthis, therefore the productof the lengthsof the factors,andits inclination
to therealunit is the sumof thoseof the factors. If we write the expressiongor
thetwo linesin theform A+ Bi, A’ + B'i, theproductis AA' — BB +i(AB + BA');

abore. Almostnothingcan,it seemsbelearnedof Argands privatelife, exceptthatin all probability
hewasbornat Genevain 1768.



andthefactthatthelengthof the productline is the productof thoseof thefactors
is seenin theform

(A2 4+ B?)(A? +B"?) = (AN —BB)?+ (AB + BA)2

In themoderntheoryof complex numberghisis expressedby sayingthattheNorm
of aproductis equalto the productof the normsof thefactors.

Argands attemptgo extendhis methodto spacegenerallywerefruitless. The
reasonswill be obvious later; but we mentionthemjust nowv becausehey called
forth from Senwis (Gelgonnes Annales 1813) a very remarkablecomment,in
whichwascontainedheonly yetdiscoseredtraceof ananticipationof themethod
of Hamilton. Argandhadbeenled to dery thatsuchan expressionasi' could be
expressedn theform A+ Bi,—althoughasis well known, Eulershavedthatone
of its valuesis arealquantity theexponentiafunctionof —11/2. Senois sayswith

referenceo thegenerakepresentationf adirectedine in space:—
“L’analogiesembleraitxiger quele trindbmefit dela forme

pcosa + qcosB -+ r cosy;

a, B, y étantlesanglesd’'unedroite avectrois axesrectangulaires;
etqu'onelt

(pcosa + qcosB +rcosy)(p' cosa + g cosB + 1’ cosy)

=coga 4 cogB+cody=1. Lesvaleursdep, g, 1, ¢, d, r’

qui satisferaiena cetteconditionseraienabsudes maisseraient-
elles imaginaires,reductiblesa la forme gérérale A+ By/—1 ?
Voila unequestiond’analysefort singuliere queje soumetsa vos
lumieres. La simple propositionque je vous en fais suffit pour
vousfaire voir que je ne crois point quetout fonction analytique

nonréellesoitvraimentreductibleala formeA+ By —1" o
As will beseenlater, thefundamental, j, k of quaternionswith theirrecipro-

cals,furnishasetof six quantitiesvhich satisfythe conditionasmposedby Serwis.
And it is quite certainthatthey cannotberepresentetdy ordinaryimaginaries.
Somethingfar more closely analogousto quaternionghan arnything in Ar-
gandswork oughtto have beensuggestethy De Moivre’stheorem(1730).Instead
of regarding,asBuéeand Argandhaddone,the expressiona(cosd +isinB) asa
directedliine, let ussupposet to representheopemator which, whenappliedto any
line in the planein which 8 is measuredturnsit in that planethroughthe angle®,
andat the sametime increasesdts lengthin theratioa: 1. Fromthe new point of



view we seeatonce,asit were,whyit is truethat
(cosB +isinB)™ = cosmB + i sinmg.

For this equationmerely statesthat m turningsof a line throughsuccesse equal
angles,in oneplane,give the sameresultasa singleturning throughm timesthe
commonangle. To make this processapplicableto any planein spaceijt is clear
that we must have a specialvalue of i for eachsuchplane. In otherwords, a
unit line, dravn in ary directionwhatever, musthave —1 for its square.Iln sucha
systemtherewill beno line in spacespeciallydistinguishedasthereal unit line:
all will bealikeimaginary or ratheralike real. We may state,n passingthatevery
quaternioncanbe representedsa(cosd + wsinB),—wherea is a realnumbey 6
areal angle,and w a directedunit line whosesquareis —1. Hamilton took this
grandstep,but, aswe have alreadysaid,without arny helpfrom the previouswork
of De Moivre. The courseof hisinvestigationss minutelydescribedn thepreface
to his first greatwork® on the subject. Hamilton, like mostof the mary inquirers
who ende&ouredto give arealinterpretatiorto theimaginaryof commonalgebra,
foundthatat leasttwo kinds, orders,or ranksof quantitieswerennecessaryor the
purpose.But, insteadof dealingwith pointson a line, andthenwanderingout at
right anglesto it, asBuée and Argandhad done, he choseto look on algebraas
the scienceof pure time*, andto investigatethe propertief “sets” of time-steps.
In its essentiahaturea setis a linear function of any numberof distinct units of
the samespecies.Hencethe simplestform of a setis a coupleandit wasto the
possiblelaws of combinationof couplesthat Hamiltonfirst directedhis attention.
It is obviousthattheway in which the two separate¢ime-stepsareinvolvedin the
couplewill determinetheselaws of combination. But Hamilton's specialobject
requiredthat theselaws shouldbe suchasto leadto certainassumedesults;and
hethereforecommencedy assumingheseandfrom the assumptiordetermined
how the separatdime-stepsmust be involved in the couple. If we useRoman
lettersfor merenumberscapitalsfor instantsof time, Greeklettersfor time-steps,
andaparenthesiso denotea couple thelaws assumedby Hamiltonasthe basisof
asystemwereasfollows:—

(Bl, Bg) — (Al,Ag) = (Bl —A]_, B, —Az) = (G,B);
(a,b)(a,B) = (ao — bB, ba + aB).>

3Lectureson QuaternionsDublin, 1853.

4Theoryof Conjugaterunctions or Algebraic Coupleswith a PreliminaryandElementanEssay
onAlgebra asthe Sciencef Pure Time, readin 1833and1835,andpublishedn Trans.R.1.A, XVII.
ii. (1835).




To shav how we give, by suchassumptionsa realinterpretationto the ordinary
algebraidmaginary take thesimplecasea = 0, b = 1, andthe secondf theabore
formuleegves

(0,2)(a,B) = (=B, a).

Multiply oncemoreby thenumbercouple(0, 1), andwe have

(0,1)(0,1)(a,B) = (0,1)(-B,a) = (—a,—P)
= (=1,0)(a,B) = —(a,p).

Thusthe numbercouple (0,1), whentwice appliedto a step-couplesimply
changests sign. Thatwe have herea perfectlyreal andintelligible interpretation
of the ordinaryalgebraidmaginaryis easilyseenby anillustration, evenif it bea
someavhat extravagantone. SomeEastermpotentatepossessedf absolutepower,
covetsthe vastpossessionsf his vizier and of his barber He determinedo rob
themboth (an operationwhich may be very satishctorily expressedy —1); but,
beingawag,hechoosesis own wayof doingit. Hedegradesisvizierto theoffice
of barbeytakingall his goodsin the processandmalesthebarberisvizier. Next
day herepeatghe operation.Eachof the victims hasbeenrestoredo his former
rank,but theoperator—1 hasbeenappliedto both.

Hamilton, still keepingprominentlybeforehim ashis greatobjectthe inven-
tion of a methodapplicableto spaceof threedimensionsproceededo studythe
propertiesof triplets of the form x+ jy+ jz by which he proposedo represent
thedirectedline in spacenvhoseprojectionson the coordinateaxesarex, y, z. The
compositionof two suchlinesby thealgebraicadditionof their several projections
agreedvith theassumptioof BuéeandArgandfor thecaseof coplanatines. But,
assuminghe distributive principle, the productof two lines appearedo give the
expression

XX —yy —zZ +i(yX +xy) + j(xZ +zX) +ij(yZ + zy).

For the squareof |, like that of i, was assumedo be negative unity. But the
interpretatiorof i j presentedh difficulty,—in factthe maindifficulty of the whole
investigation,—andit is speciallyinterestingto seehow Hamiltonattacledit. He
sawv that he could geta hint from the simplercase alreadythoroughlydiscussed,
provided the two factorlines werein one planethroughthe real unit line. This
requiresmerelythat

y:z:y:Z, or yZ-zy=0;

5Comparehesewith thelong-subsequeritieasof Grassmanrpresentlyto bedescribed.



but thenthe productshouldbe of the sameform asthe separatdactors. Thus,in
this specialcasethetermin i j oughtto vanish.But thenumericalfactorappearso
beyZ + zy, while it is thequantityyZ — zy whichreally vanishesHenceHamilton
wasatfirst inclinedto think thatij mustbetreatedasnil. But he soonsaw that“a
lessharshsupposition'would suitthesimplecase.For his speculation®n setshad
alreadyfamiliarizedhim with theideathatmultiplicationmightin certaincasesot
becommutatve; sothat,asthelasttermin theabove productis madeup of thetwo
separatéermsi jyZ and jizy, thetermwould vanishof itself whenthefactorlines
arecoplanamprovidedij = — ji, for it would thenassumeheformij(yZ —zy). He
hadnow thefollowing expressiorfor the productof ary two directedlines

XX —yy —zZ +i(yX +xy) + j(xZ + zX) +ij(yZ — zy).

But his resulthadto be submittedto anothertest,the Law of the Norms. As soon
ashefound, by trial, thatthis law was satisfied,he took the final step. “This led
me; hesays,"to conceve thatperhapsinsteadof seekingto confineoursehesto
triplets, ... we oughtto regardtheseasonly imperfectformsof Quaternions,.. and
thatthusmy old conceptiorof setsmightreceve anewv andusefulapplicatior. In
averyshorttime hesettledhisfundamentahssumptionstHe hadnow threedistinct
space-units, j, k; andthe following conditionsregulatedtheir combinationby
multiplication:—

i2=j°=K=-1 ij=—ji=k jk=-kj=i, ki=—-ik=j5

And nowthe productof two quaterniongould be at onceexpressedsathird
guaternionthus—

(a+ib+ je+kd)(a +ib’+ j¢'+ kd') = A+iB+ jC+ kD,
where
A=ad —bb —cd —dd’,
B=all +bd +cd —dc/,
C=acd +cd +db —bd,
D =ad +da +bd —cb.

Hamilton at oncefound thatthe Law of the Normsholds,—notbeingaware that
Eulerhadlongbeforedecomposetheproductof two sumsof four squarednto this

51t will beeasyto seethat,insteadbf thelastthreeof thesewe maywrite thesingleonei jk = —1.



very setof four squaresAnd now a directedline in spacecameto be represented
asix + jy-+ kz, while the productof two linesis the quaternion

— (XX +yy +22) +i(yZ —zy) + j(2X —xZ) + k(xy —yX).

Toary oneacquaintedevento aslightextent,with theelement®f Cartesiargeom-
etry of threedimensionsa glanceat the extremelysuggestie constituentf this
expressiorshavs how justly Hamiltonwasentitledto say—"Whentheconception
... hadbeensofar unfoldedandfixedin my mind, | felt thatthe new instrument
for applyingcalculationto geometry for which | hadsolong sought,wasnow, at
leastin part,attained. The dateof this memorablediscovery is Octoberl6, 1843.

We candevote but a few lines to the consideratiorof the expressionabove.
Supposefor simplicity, the factorlinesto be eachof unit length. Thenx, y, z, X,
y, Z expressheir direction-cosinesAlso, if 6 betheanglebetweerthem,andx’,
y’, Z’ thedirection-cosinesf aline perpendiculato eachof them,we have

XX +yy +2Z =cosB, yZ-—zy=x"sind, &c.,
sothatthe productof two unit linesis now expresseds
—cosB+ (ix" + jy’ +kZ') sin6.

Thus,whenthefactorsareparallel,or 6 = 0, the product,which is now the square
of ary (unit) line, is —1. And whenthetwo factorlinesareat right anglesto one
anotheror 8 = 11/2, theproductis simply ix” + jy’ + kZ’, theunitline perpendicu-
lar to both. Hence andin this liesthemainelemenbf thesymmetryandsimplicity
of the quaternioncalculus,all system®f three mutuallyrectangularunit linesin
spacehavethesamepropertiesasthefundamentabkystem, j, k. In otherwords,if
the system(consideredsrigid) be madeto turn abouttill thefirstfactorcoincides
with i andthe secondwith j, the productwill coincidewith k. This fundamen-
tal system therefore becomesinnecessaryandthe quaternionmethod,in every
casetakesits referencdinessolelyfrom the problemto whichit is applied.It has
therefore asit were,a uniqueinternal charactepof its own.

Hamilton, having gonethusfar, proceededo evolve theseresultsfrom atrain
of a priori or metaphysicateasoningwhichis sointerestingn itself, andsochar
acteristicof theman,thatwe briefly sketchits nature.

Let it be supposedhatthe productof two directedlines is somethingwhich
hasquantity;i.e., it may be halved, or doubled,for instance.Also let usassume
(a) spaceto have the samepropertiesin all directions,and make the corvention
(b) thatto changethe sign of ary onefactorchangeghe sign of a product. Then



the productof two lineswhich have the samedirectioncannotbe evenin part,a

directedquantity For, if the directedpart have the samedirectionasthe factors,
(b) shaws thatit will bereversedby reversingeither andthereforewill recoverits

originaldirectionwhenbotharereversed But thiswould obviously beinconsistent
with (a). If it be perpendiculato the factorlines, (a) shawvs thatit must have

simultaneouslyevery suchdirection. Henceit mustbeamerenumber

Again, the productof two lines at right anglesto oneanothercannot,evenin
part, be a number For the reversalof eitherfactormust,by (b), changeits sign.
But, if we look at the two factorsin their nen positionby thelight of (a), we see
thatthe signmustnot change But thereis nothingto preventits beingrepresented
by a directedline if, asfartherapplicationsof (a) and(b) shav we mustdo, we
take it perpendiculato eachof thefactorlines.

Hamilton seemsnever to have beenquite satisfiedwith the apparenteten-
geneityof a quaterniondependingasit doeson a numericalanda directedpart.
He indulgedin a greatdeal of speculatiorasto the existenceof an extra-spatial
unit, which wasto furnishthe raisond’étre of the numericalpart, andrenderthe
guaterniorhoma@eneousaswell aslinear. But, for this, we mustreferto his own
works.

Hamiltonwasnotthe only worker atthetheoryof sets.Theyearafterthefirst
publicationof the quaternionmethod,thereappeared work of greatoriginality,
by Grassmanfy in which resultsclosely analogouso someof thoseof Hamil-
tonweregiven. In particulartwo specie®f multiplication (“inner” and“outer”) of
directedinesin oneplaneweregiven. Theresultsof thesetwo kindsof multiplica-
tion correspondespectrely to the numericalandthe directedpartsof Hamilton's
quaterniorproduct. But Grassmanmistinctly statesn his prefacethathe hadnot
had leisureto extend his methodto anglesin space. Hamilton and Grassmann,
while their earlierwork hadmuchin common,hadvery differentobjectsin view.
Hamilton,aswe have seenpbadgeometricalpplicationashismainobject;whenhe
realizedthe quaternionsystem he felt that his objectwasgained,andthenceforth
confinedhimselfto the developmentof his method.Grassmanis objectseemdo
have been all along,of amuchmoreambitiouscharacterviz., to discover, if pos-
sible, a systemor systemsn which every concevable modeof dealingwith sets
shouldbe included. Thathe madevery greatadwvancestowardsthe attainmeniof
this objectall will allow; thathis method,evenascompletedn 1862,fully attains
it is not so certain. But his claims, however greatthey may be, canin no way

Die Ausdehnungslebr Leipsig, 1844, 2d ed., “vollstandig und in strenger Form bearbeitef
Berlin, 1862.Seealsothecollectedworksof Mdbius,andthoseof Clifford, for agenerakxplanation
of Grassmanis' method.



conflictwith thoseof Hamilton,whosemodeof multiplying couples(in whichthe

“inner” and“outer” multiplicationareessentiallyinvolved) wasproducedn 1833,

andwhosequaterniorsystemwascompletedandpublishedbeforeGrassmanmhad

elaboratedor presseven the rudimentaryportionsof his own system,in which

theveritabledifficulty of thewhole subjecttheapplicationto anglesin spacepbad

not even beenattaclked. Grassmanmadein 1854 a somevhat savageonslaught
on Cauchyand De St Venant,the former of whom hadinvented,while the latter

hadexemplifiedin application the systemof “clefs algébriques, whichis almost
preciselythatof Grassmann[Seeletternow appendedo this article. 1899.] But

it is to be obsered that Grassmannthoughhe virtually accusedCauchyof pla-

giarism,doesnot appeaito have preferredary suchchage againstHamilton. He

doesnotalludeto Hamiltonin the secondedition of hiswork. Butin 1877,in the

Mathematishe Annalen XIl., hegave apaper‘On the Placeof Quaternionsn the

Ausdehnungslebf in which hecondemnsasfarashe can,thenomenclaturend

method=f Hamilton.

Thereare mary othersystemspasedon variousprinciples,which have been
givenfor applicationto geometryof directedlines,but thosewhich dealwith prod-
ucts of lines are all of suchcompleity asto be practically uselessn applica-
tion. Others,suchasthe Barycentrisbe Calcll of Mobius,andthe Méthodedes
Equipollences;f Bellavitis, give elegantmodesof treatingspaceproblemssolong
aswe confineourselesto projectve geometryand mattersof that orderbut they
arelimited in their field, andthereforeneednot be discussedere. More general
systemshaving closeanalogiegdo quaternionshave beengiven sinceHamilton’s
discorery waspublished.As instancesve maytake Goodwins andO’Brien’s pa-
persin the Cambridg PhilosophicalTransactiongor 1849.

Relationgo otherBrandesof Science—Eventheabove brief narratve shavs
how closeis theconneion betweermuaterniongandthe ordinaryCartesiarspace-
geometry Werethis all, the gain by their introductionwould consistmainly in a
clearerinsight into the mechanisnof coordinatesystems rectangularor not—a
very importantadditionto theory but little advancesofar aspracticalapplication
is concernedBut we have now to considerthat, asyet, we have not taken adwan-
tageof the perfectsymmetryof the method. Whenthatis done,the full value of
Hamilton’s grand stepbecomesvident, and the gain is quite as extensie from
the practicalasfrom the theoreticalpoint of view. Hamilton, in fact,remark$, “|
regardit asan ineleganceandimperfectionin this calculus,or ratherin the state
to whichit hashithertobeenunfolded,wheneer it becomespr seemdo become,
necessaryo have recourse.. to theresource®f ordinaryalgebrafor the solution

8Lectueson Quaternions# 513.
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of equationsin quaternions This refersto the useof the x, y, z coordinates,—
associatedof course,with i, j, k. But when,insteadof the highly artificial ex-
pressionix + jy+ kz, to denotea finite directedline, we employ a singleletter a
(Hamiltonuseghe Greekalphabetor this purpose)audfind thatwe arepermitted
to dealwith it exactly aswe shouldhave dealtwith the morecomplex expression,
theimmensegainis atleastin partobvious. Any quaterniormaynow beexpressed
in numeroussimpleforms. Thuswe may regardit asthe sumof a numberanda
line, a+ a, or asthe product,By, or the quotient,d¢ 1, of two directedlines, &c.,
while, in mary caseswe mayrepresenit, sofarasit is required by a singleletter
suchasq, r, &c.

Perhapgo the studentthereis no partof elementarynathematicsorepulsve
asis sphericaltrigonometry Also, everything relatingto changeof systemsof
axes,asfor instancan the kinematicsof arigid systemwherewe have constantly
to considerone set of rotationswith regardto axes fixed in space,and another
setwith regardto axesfixedin the system,is a matterof troublesomeompleity
by the usualmethods.But every quaternionformulais a propositionin spherical
(sometimegdgyradingto plane)trigonometry and hasthe full adwvantageof the
symmetryof the method.And oneof Hamilton’s earliestadvancesn the studyof
his system(an adwanceindependentlynade,only a few monthslater, by Cayley)
wasthe interpretationof the singularoperatorg( )q~!, whereq is a quaternion.
Applied to any directedline, this operatorat onceturnsit, conically, througha
definite angle,abouta definite axis. Thusrotationis now expressedn symbols
at leastassimply asit canbe exhibited by meansof a model. Had quaternions
effectednothingmorethanthis, they would still have inauguratedneof the most
necessarnandapparentlympracticablepf reforms.

The physicalpropertiesof a heterogeneousody (provided they vary continu-
ouslyfrom point to point) areknown to dependjn the neighbourhooaf ary one
point of the body, on a quadricfunction of the coordinateswith referenceo that
point. The sameis true of physicalguantitiessuchaspotential,temperature&c.,
throughoutsmall regionsin which their variationsare continuousandalso, with-
out restrictionof dimensions,of momentsof inertia, &c. Hence,in additionto
its geometricalapplicationsto surfacesof the secondorder the theoryof quadric
functionsof positionis of fundamentalmportancean physics.Herethe symmetry
pointsat onceto the selectionof the threeprincipal axesasthedirectionsfor i, |,
k; andit would appearat first sight asif quaternionscould not simplify, though
they mightimprove in elegancethe solutionof questionof thiskind. But it is not
so. Evenin Hamilton’s earlierwork it wasshavn thatall suchquestionsverere-
ducibleto the solutionof linear equationsin quaternionsandhe provedthatthis,
in turn, dependedn the determinatiorof a certainoperator which could be rep-
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resentedor purpose®f calculationby a singlesymbol. The methodis essentially
the sameasthat developed,underthe nameof “matrices” by Cayley in 1858 but
it hasthe peculiaradwantageof the simplicity which is the naturalconsequencef
entirefreedomfrom corventionalreferencdines.

Sufficient hasalreadybeensaidto shav the closeconneion betweenguater
nionsandthetheoryof numbers But onemostimportantconneion with modern
physicsmustbe pointedout, asit is probablydestinedto be of greatservicein
theimmediatefuture. In thetheoryof surfacesjn hydrokinetics heat-conduction,
potentials &c., we constantlymeetwith whatis calledLaplaces opemtor, viz.,

d? d>  d?
W+d_)/2+@'

We know that this is an invariant i.e., it is independenbdf the particulardirec-
tions chosenfor the rectangularcoordinateaxes. Here,then,is a casespecially
adaptedo theisotrogy of the quaterniorsystemandHamiltoneasilysawv thatthe
expression

.d .d K d

I& + J@ + dz
could be, like ix + jy+ kz, effectively expressedy a singleletter He chosefor
this purposell. And we now seethatthe squareof [ is the negative of Laplaces
operatorwhile [ itself, whenappliedto any numericalquantityconceved ashav-
ing adefinitevalueat eachpoint of spacegivesthe directionandtherate of most
rapid change of that quantity Thus,appliedto a potential,it givesthe direction
andmagnitudeof theforce;to a distribution of temperaturén a conductingsolid,
it gives(whenmultiplied by the conductvity) theflux of heat,&c.

No bettertestimoty to thevalueof thequaterniommethodcouldbedesiredhan
the constanusemadeof its notationby mathematiciank e Clifford (in his Kine-
matid andby physicistslike Clerk-Maxwell (in his Electricity and Magnetisn).
Neitherof thesemenprofessedo employ the calculusitself, but they recognized
fully the extraordinaryclearnes®f insightwhich is gainedeven by merelytrans-
lating theunwieldy Cartesiarexpressionsnetwith in hydrokineticsandin electro-
dynamicsinto the pregnantlanguageof quaternions.

Works on the Subject—Of coursethe greatworks on this subjectarethe two
immensetreatisedy Hamiltonhimself. Of thesethe second Elementf Quater
nions London, 1866; 2nd ed. 1899)was posthumous—incomplet@ one short
partof the original planonly, but thata mostimportantpart,thetheoryandappli-
cationsof (. Thesatwo works,alongwith Hamilton’s otherpaperson quaternions
(in the Dublin Proceedingsand Transactionsthe PhilosophicalMagazine &c.),
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arestorehousesf information,of which but asmallportionhasyetbeenextracted.
A Germartranslatiorof Hamilton's Element$hasrecentlybeenpublishedby Glan.

Otherworks on the subject,in orderof date,are Allegret, Essaisur le Calcul
desQuaterniongParis, 1862); Tait, An ElementaryTreatiseon Quaterniong Ox-
ford, 1867;2nded.,Cambridge1873;3rd, 1890;Germartranslatiorby V. Scherf,
1880,andFrenchby Plarr, 1882-84) KellandandTait, Introductionto Quaternions
(London, 1873;2nd ed. 1882); Hollel, Elementsde la Théorie desQuaternions
(Paris, 1874); Unverzagt, Theorieder QuaternionenWiesbaden1876); Laisant,
Introductiona la Méthodedes Quaternions(Paris, 1881); Graefe, Vorlesungn
Uberdie Theorieder Quaternioner(Leipsig, 1884).[To thesemustnow beadded
McAulay, Utility of Quaternionsn Physicsl.ondon,1893;aswell asa numberof
elementarytreatises1899.]

An excellentarticleonthe“Principles” of thescienceby Dillner, will befound
in the Mathematishe Annalen vol. XI., 1877. And a very valuablearticle onthe
generalquestion,Linear AssociativeAlgebra, by the late Prof. Peirce,was ul-
timately printedin vol. iv. of the AmericanJournalof Mathematics. Sylvester
and othershave recentlypublishedextensve contritutionsto the subject,includ-
ing quaternionsinderthe generalclassmatrix, andhave developedmuchfarther
thanHamiltonlivedto do the solutionof equationsn quaternions Sereral of the
worksnhamedabove arelittle morethancompilationsandsomeof theFrenchones
arepainfully disfiguredby anattemptto introduceanimprovementof Hamilton’s
notation; but the merefact that so mary have alreadyappearedshavs the sure
progressvhich the methodis now making.

[In anarticle by Prof. F. Klein (Math. Ann. LI. 1898)a claim is somavhat
obscurelymadefor Gausgo ashareatleast,in theinventionof QuaternionsFull
informationon the subjectis postponedill the publicationof Gauss’Nachlassin
Vol. VIII. of his Gesammelt&Verke. Fromthe article mentionedabore, andfrom
a “Digressionon Quaternions’in Klein und SommerfeldUeberdie Theoriedes
Kreisels(p. 58), this claim appeargo reston somesingularmisapprehensionf
the natureof a Quaternion:—wherebit is identifiedwith a totally differentkind
of conceptacertainvery restrictedform of linearandvectorOperator 1899.]

APPENDIX.
QUATERNIONSAND THE AUSDEHNUNGSL EHRE.

[Nature,June4th, 1891.]
Prof. Gibbs’ secondlong letter was evidently written before he could have
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readmy reply to thefirst. This is unfortunateasit tendsto confusethosethird
partieswho may be interestedn the questionnow raised.Of coursethatquestion
is naturally confinedto the invention of methodsfor it would be preposterouso
compareGrassmanmvith Hamiltonasananalyst.

| have againreadmy article “Quaternions”in the Encyc. Brit., andhave con-
sultedoncemoretheauthoritiesherereferredto. | have notfoundanything which
| shouldwish to alter. Thereis much, of course,which | shouldhave liked to
extend,hadthe Editor permitted.An article on Quaternionstigorouslylimited to
four pagescouldobviously be no placefor adiscussiorof Grassmanis'scientific
work, exceptin its bearingsuponHamilton’s calculus.Moreover, hada similar ar
ticle onthe Ausdehnungslekrbeenasled of me, | shouldcertainlyhave declined
to undertak it. Since1860,when| ceasedo be a Professorof Mathematics|
have paid no specialattentionto generalsystemsof Sets,Matrices or Algebras
andwithout much further knowledgel shouldnot attemptto write in ary detail
aboutsuchsubjects.l may however, call attentionto the factswhich follow for
they appearto be decisie of the questionnow raised. Cauchy(ComptesRendus
10/1/53)claimedquaternieasa specialcaseof his“clefs algébriques. Grassmann,
in turn (ComptesRendus,17/4/54; and Crelle, 49), declaredCauchys methods
to be preciselythoseof the AusdehnungslehreBut Hamilton (Lectues Pref. p.
64, foot-note),saysof the clefs algebriqgues(andtherefore,on Grassmanrs own
showing of the methodsof the Ausdehnungslehrahatthey are“includedin that
theoryof SETSin algebra... announcedby mein 1835... of which SETSI have
alwaysconsideredhe QUATERNIONS... to bemerelya particular CASE”

Butall thishasnothingto dowith Quaternionstegardedasacalculus' uniguely
adaptedo Euclidianspace. Grassmaniived to have his fling at them, but (so
far asl know) he venturedon no claim to priority. Hamilton, on the otherhand,
even after readingthe first Ausdehnungslebr did claim priority and was never
answered.He quoted,and commentedupon,the very passag€of the Prefaceto
thatwork) my allusionto which is censuredby Prof. Gibbs. [Lectues Pref. p.
62, footnote.] | still think, andit would seemthat Hamilton alsothought,thatit
wassolelybecausésrassmanrhad not realizedthe conceptiorof the quaternion
whetheras Ba or as a1, that he felt thosedifficulties (asto anglesin space)
which he sayshe had not had leisureto overcome. | have not seenthe original
work, but I have consultedvhatprofesses$o beaverbatimreprint,producedunder
the authors supervision.[Die Ausdehnungslebrvon 1844, oder die lineale Aus-
dehnungslel® &c. Zweite im Text urverunderteAuflage. Leipzig, 1878.] Prof.
Gibbs’ citationsfrom my article give a very incompleteandone-sidedepresenta-
tion of thefew remarkd felt it necessargndsuficientto make aboutGrassmann.
I neednot quotethemhere,asarnyoneinterestedn the mattercanreadily consult

14



thearticle.

In regardto Matrices,| donotthink | have ever claimedanything for Hamilton
beyond the sepanble ¢, andthe symbolic cubic (or biquadratic,asthe casemay
be) with its linear factorsandthesel still assertto be exclusvely his. My own
work in this directionhasbeenconfinedto Hamilton’s ¢, with its squareroot, its
applicationdo stressandstrain,&c.

As to the generalhistory of which (asl have saidabove) | claim no exactor
extensve knowledge, Cayley and Sylvesterwill, no doubt, defendthemseles if
they seefit. It would be at onceridiculousandimpertinenton my partwerel to
take upthecudgelsn their behalf.
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