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Compression Between Parallel Plates 

Consider two flat plates that enclose an elastic amorphous material that can flow, but is nearly 

incompressible and inextensible.  The two plates are brought slightly closer together and the 

material is deformed by the compression.  The problem that will be considered here is the 

geometrical deformation of the material. 

Let the distance between the two plates be 
  

! 

w
0
 and the displacement be 

! 

".  In the first 

instance, we consider a situation where the material between the plates is confined around the 

outer margin, as in a piston.  Since the material cannot move laterally, it is restricted to the 

movement of compression, that is in the same direction as the displacement of one of the plates. 

 

 

The location is measured relative to a point on the surface of the lower plate, A0.  The 

location before the compression is 

! 

"
0
 and, after the compression, it is 

! 

"
1
.  The difference 

between the locations is 

! 

" # .  This is expressed symbolically as follows. 

! 

"
1

= "
0

+ # " .  
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The problem comes down to writing an expression for the vector 

! 

" #  as a function of 

location.  In this situation the direction of the displacement is perpendicular to the two plates.  

Therefore, we construct a unit vector that is perpendicular to the bottom plate, 

! 

p.  The part of 

! 

"
0
 that is relevant to the compression, 

! 

" # , is the projection of 

! 

"
0
 upon 

! 

p, 

! 

" •p, that is, the 

component of the location vector that is perpendicular to the lower plate.  Overall, the material 

between the plates must compress a distance 

! 

", but that compression  is evenly distributed over 

the distance of
  

! 

w = w
0
" # .  The perpendicular component of 

! 

"
0
, 

! 

" •p, is divided by the interval 

between the plates, 
  

! 

w
0
" # , and multiplied by the total amount of compression, 

! 

", to give the 

amount of displacement of the location and that displacement is in the direction from the upper 

plate to the lower plate. 

  

! 

"
1

= "
0

+ #" = "
0

+ #$
"
0

•p

w
0
% #

$%p . 

Normally, the compression is small, on the order of 5%, or less.  Most biological materials are 

relatively incompressible and inextensible largely because they are mostly water in colloidal gels 

or they are mineralized, as in bone.  When it is important that biological materials do not 

compress, they are usually provided with a ‘skeleton’ of some sort or they are confined in an 

inextensible cavity. 

If we were to look at the displacement vectors, they would start a vertical lines 

! 

" units long at 

the upper plate and  zero units long at the lower plate with a uniform gradation between the two. 

If we look at the extension vectors, the vertical distance between two locations shortens a 

small amount, while the horizontal axes remain the same, so that there is a slight squashing or 

flattening of the test cube.  If the vertical direction is the z axis, then the extension matrix is in 

the following form. 

  

! 

E = 1.0,1.0,1.0 " #[ ] . 

The flattening is the same everywhere in the matrix, therefore the extension strain is uniform.  

There is no twisting or rotation in the matrix, so the orientation strain is a constant unity 

throughout the matrix. 

! 

" = 1.0,1.0,1.0[ ] . 
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Unrestrained Compression 

The constrained case of compression is simple and a bit boring, but it gives us a start  on the 

unconstrained case, which is neither simple or boring.  In the unconstrained we also assume an 

incompressible, or minimally compressible, amorphous matrix between two flat plates, but with 

room to move laterally, parallel with the plates.  The gel will be assumed to be a circular mass, to 

simplify the calculations and because it is the lowest energy state for an unconstrained gel 

capable of flow. 

When the plates move together, they compress the gel causing it to flow from the upper plate 

towards the lower plate, as in the example we was just considered.  However, since the gel can 

flow laterally, it will do so and spread between the plates.  We can say a few things about the 

movement of the gel, based upon the geometry of the situation.  

First, the approximation of the plates by distance 

! 

"  will cause a volume,   

! 

"V
circle

= # r
0

2
$% , of 

material to flow laterally from a circular region of radius 
  

! 

r
0
 about the center of the mass.  The 

outer radius of the circular ring that contains the material that was inside the circular slab of 

radius 
  

! 

r
0
. is given by a simple expression. 

  

! 

"Vring = # r1

2
w
0
$ %( ) $# r0

2
w
0
$ %( ) = # r1

2
$ r0

2( ) w . 

The volume of displaced material is equal to the volume of the ring that it occupies, so, we 

can set them equal and solve for the outer margin of the ring in terms of the vertical 

approximation and the radius of the original circular slab. 

  

! 

" r
0

2
#$ = " r

1

2
% r

0

2( )w

r
0

2
#$ = r

1

2
% r

0

2( )w

r
1

2 =
r

0

2
w

0

w
0
% $

r
1

= r
0
#

w
0

w
0
% $

.

 

Consequently, the central circular slab of radius 
  

! 

r
0
 now occupies a circular slab of radius 

  

! 

r
1
, 

where 
  

! 

r
1
 is given by the formula that was just derived.  For small amounts of compression, the 

percentage increase in radius is about half the percentage decrease in height between the plates. 
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If the excess material were to flow uniformly peripherally, then the material at 
  

! 

r
0
 from the 

center of the disc would end up lying at 
  

! 

r
1
 from the center of the disc.  However, flow is not 

uniform.  It is most likely to flow as described by the Navier-Stokes Equation of hydrodynamics, 

that is laminar flow.  If that is a reasonable approximation to the flow then the rate of flow is 

proportional to the square of the distance form the fixed walls.  Close to the wall there is very 

little flow and near the plane midway between the two walls the flow would be maximal and 

proportional to the square of the distance to the nearest wall. 

The lateral flow would be given by an expression like the following, where zero is taken to be 

the middle plane, half way between the two plates. 

  

! 

d x( ) = d
Max

" kx
2
.  

The variable ‘d’ is the displacement of the material parallel to the plates and , ‘x’, is the 

distance to the nearest wall.  The constant   

! 

d
Max

 is the displacement of the material, in the middle 

horizontal plane, at x=0.0.  We do not know   

! 

d
Max

 or k, therefore we must solve for them in 

terms of the variables that we do know. 

At the upper and lower plates the horizontal displacement is zero, which allows us to express 

the constant in terms of the maximal displacement . 

  

! 

d
w

2

" 

# 
$ 

% 

& 
' = 0 = d

Max
( kw

2 ) k =
d

Max

w

2

" 

# 
$ 

% 

& 
' 

2
=

4 d
Max

w
2

.  

Let   

! 

d
Max

= µ, to simplify the notation a bit for calculation.  Envision the flow as a stack of thin 

circular rings sheets that are expanding peripherally from the radius 
  

! 

r
0
 to the radius 

  

! 

r
0

+ d x( ) , 

where d(x) is the diameter given by the expression for the displacement, and each sheet has a 

thickness of   

! 

"x .  The volume of the expansion is the sum of those sheets, where each sheet has a 

volume that is the thickness of the sheet times its width. 

  

! 

V = " # r
0

+ d( )
2

$ r
0

2[ ]
n=0

n= w /N

% #&x . 

Passing to the limit for section thickness, dx, the expression can be written as an integral. 
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! 

V = 2 " # r
0

+ d( )
2

$ r
0

2[ ]
0

w/2

% #dx

= 2" r
0

+ d( )
2[ ]

0

w/2

% #dx - 2" r
0

2
1

0

w/2

% #dx .

 

The second integral evaluates as follows. 

  

! 

2" r
0

2
1

0

w / 2

# dx = 2" r
0

2
x[ ]

0

w/2

= " r
0

2
w  

The first integral is more difficult to evaluate.  The term within the square brackets can be 

expanded into the following expression. 

  

! 

r
0

+ µ "
4µ

w
2

x
2

# 

$ 
% 

& 

' 
( 

2

=
16µ2

w
4

x
4 " 8

r
0
µ

w
2

+
µ2

w
2

# 

$ 
% 

& 

' 
( ) x

2 + µ2 + 2µr
0

+ r
0

2( ) 

The integral of this expression turns out to be much simpler than one might expect. 

  

! 

2"
16µ2

w
4

x
4 # 8

r
0
µ

w
2

+
µ2

w
2

$ 

% 
& 

' 

( 
) * x

2 + µ2 + 2µr
0

+ r
0

2( )
+ 

, 
- 

. 

/ 
0 

0

w / 2

1 dx

= 2"
16µ2

5w
4

x
5 #
8

3

r
0
µ

w
2

+
µ2

w
2

$ 

% 
& 

' 

( 
) * x

3 + µ2 + 2µr
0

+ r
0

2( )* x

+ 

, 
- 

. 

/ 
0 
0

w / 2

= 2"
16µ2

5w
4

w
5

32
#
8

3

r
0
µ

w
2

+
µ2

w
2

$ 

% 
& 

' 

( 
) *

w
3

8
+ µ2 + 2µr

0
+ r

0

2( )*
w

2

+ 

, 
- 

. 

/ 
0 

= "
µ2

5
#
2

3
r

0
µ + µ2( ) + µ2 + 2µr

0
+ r

0

2( )
+ 

, 
- 

. 

/ 
0 *w

 

If we subtract the second integral from the first, then the volume of the flow is given by the 

following expression. 

  

! 

V = "
8µ2

15
+
2

3
r
0
µ

# 

$ 
% 

& 

' 
( )w 

This expression can be set equal to the displaced volume and, with suitable rearrangement of the 

terms, it can be solved for the maximal displacement. 



 Compression Between Plates 

 6 

  

! 

V = "
8µ2

15
+
2

3
r0 µ

# 

$ 
% 

& 

' 
( )w = " r0 * ,therefore,  

8µ2
w

15
+
2

3
r0 µw+ r0 * = 0 and thus

µ = r0

5

4

, 

- 
. 
/ 

0 
1 
2

+
15*

8w
+
5

4

# 

$ 

% 
% 

& 

' 

( 
( 
.

 

The maximal displacement is a function of the radius of the circular slab, the amount of 

compression, and the distance between the plates. 
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The displacement profiles for different amounts of compression.  The 
light blue area is a cross-section of a half of a circular slab of radius 1.0.  The slab 
is compressed from 0.1 to 0.9 of its height (δ).  This causes the material in the slab 
to be displaced peripherally (d).  The volume of the displaced material is the 
displacement profile rotated in a circle about the center of the slab. 

For small compressions, there is a small bulging of the matrix, approximately 8/10ths the 

percentage of the compression, so that a 10% compression causes the maximal lateral 

displacement to be about 8% of the radius of the slab.  When the compression is 50%, the 

maximal displacement is about 60% of the slab radius.  Finally, when the compression is large, 

like 90%, then the maximal displacement is large, 300% of the slab radius. 

 

 

Compression without lateral constraint causes the matrix to move 
vertically and laterally.  The vertical movement is greatest near the moving 
plates and the lateral movement is greatest near the middle horizontal plane. 
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The displacement vectors for compression vary in obliquity as a function of the transverse 

position of the location and the distance from the center of the slab.  If we take the middle 

horizontal plane as our reference plane, then the locations in that plane are carried directly 

laterally a distance equal to the maximal displacement.  At the bounding planes, the 

displacement is entirely vertical.  Between those two extreme locations, the displacement is the 

sum of the vertical displacement, computed in the first example, 

  

! 

" #V = $%
#
0

•p

w
0
& $

%&p , 

and the lateral displacement for that horizontal plane, computed in this example 

  

! 

" #
H

= µ $
µ

w
2

x
2

% 

& 
' 

( 

) 
* +
r

r
,   

  

! 

where r is the radial vector,  from the center of the slab to the initial location  and 

  

! 

µ = r
0

5

4

" 

# 
$ 
% 

& 
' 
2

+
15(

8w
)
5

4

* 

+ 

, 
, 

- 

. 

/ 
/ 
. 

If the origin of the coordinate system is in the middle horizontal plane at the center of the slab 

and the initial location is 

! 

"
0

= #i +$j+ %k , then 

! 

r = "i +#j .  Therefore, assuming that the plates 

are parallel to the i,j-plane and equal distances above and below, that the compression brings 

them symmetrically towards the plane, and that the center of the slab is at the origin of the 

coordinate system, then the displacement vector is given by the following expression. 

  

! 

" # = " #V + " #H = $%
#
0
•k

w
0

%&k + µ &
µ

w
2

x
2

' 

( 
) 

* 

+ 
, %
r

r

= $%
& -k

w
0

+ µ &
µ

w
2

x
2

' 

( 
) 

* 

+ 
, %

.i +/j

.i +/j
.

 

If we examine the positive j,k-plane, then the expression reduces to the following equation. 

  

! 

" # = µ 1$
x

2

w 2( )
2

% 

& 
' ' 

( 

) 
* * j$ +,

x

w 2( )
k ,  where µ = r

0

5

4

% 

& 
' 
( 

) 
* 
2

+
15+

8w
$
5

4

- 

. 

/ 
/ 

0 

1 

2 
2 
.  

For small amounts of compression, the lateral component is small.  However, if the matrix is 

loosely constrained, like the nucleus pulposus of an intervertebral disc within the ligamentous 
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sheath of the annulus fibrosus, then the lateral displacement may be the limiting parameter upon 

compression. 

 

 

The flow vectors for compression between parallel plates are greater 
and more horizontal for middle levels and greater radii.  The 
illustration is for a compression that is 0.4 times the distance between the plates.  
The blue markers indicate the original locations and the blue markers show where 
they flow. 

In general, biological structures are not a neat as the computed examples considered here, but 

these examples do give reasonable models for the consideration of biological situations.  While 

exact solutions of the biological geometry may not be possible, it is possible to generate order of 

magnitude solutions that support or deny particular interpretations. 

The Extension Matrix 

The basic formula for compression flow is the one given above and repeated here. 

  

! 

" # = " #V + " #H = µ 1$
x

2

w
2

% 

& 
' 

( 

) 
* +

,i +-j

,i +-j
+ .+

$ /k

w
0

.  

To calculate the components of the extension matrix we need to substitute the locations that are 

slightly incremented and decremented in each of the cardinal directions and subtract the 

decremented value from the incremented value. The incremented location for the i direction is 

! 

" + #( ) i +$ j.  The difference clearly affects only the first term in the expression for 

! 

" # .  The 

difference between the incremented and the decremented transformations is clearly a scalar 

factor times the increment. 
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! 

µ 1"
x

2

w
2

# 

$ 
% 

& 

' 
( )

* + +( )i +,j
* + +( )i +,j

"µ 1"
x

2

w
2

# 

$ 
% 

& 

' 
( )

* " +( )i +,j
* " +( )i +,j

= µ 1"
x

2

w
2

# 

$ 
% 

& 

' 
( )2

+i

+i
.  

However, the maximal displacement (

! 

µ ) term depends upon the distance from the center of the 

flow (
  

! 

r
0
) and thus upon the i term. 

  

! 

µ = r
0

5

4

" 

# 
$ 
% 

& 
' 
2

+
15(

8w
)
5

4

* 

+ 

, 
, 

- 

. 

/ 
/ 

= r
0
0 . 

The radial  distance is the square root of the squares of the i and j components of the location 

vector. 

  

! 

r
0

= " ± #( )
2

+$2 . 

Consequently, the vector between the transformed increments depends upon the increment in a 

complex way. 

  

! 

" 1#
x

2

w
2

$ 

% 
& 

' 

( 
) * + + ,( )

2

+-2 # + # ,( )
2

+-2
$ 
% 
& 

' 
( 
) *2

,i

,i
.  

The same arguments apply to the j axis.  Therefore, we can write down its transformation by 

substituting the j increment into the expression in the place of the i increment. 

  

! 

" 1#
x

2

w
2

$ 

% 
& 

' 

( 
) * +2 + ,+ -( )

2

# +2 + ,# -( )
2$ 

% 
& 

' 
( 
) *2

-j

-j
.  

The k axis is involved in the both terms of the equation for flow, therefore we can calculate 

the increment and decrement in much the same manner as the other two axes. 

  

! 

µ 1"
x + #( )

2

w
2

$ 

% 
& & 

' 

( 
) ) *

+i +,j

+i +,j
" -*

x + #( )k

w

. 

/ 
0 
0 

1 

2 
3 
3 
" µ 1"

x " #( )
2

w
2

$ 

% 
& & 

' 

( 
) ) *

+i +,j

+i +,j
" -*

x " #( )k

w

. 

/ 
0 
0 

1 

2 
3 
3 

=
µ

w
2

x " #( )
2

" x + #( )
2[ ]* +i +,j

+i +,j
" -*

2 #k

w
,

= "
4µ x #

4w
2
* +i +,j( ) " -*

2 #k

w
,  where 4 = +2 +,2

.

 

The components of the extension matrix are the ratio of the transformed increments to the 

untransformed increments. 



 Compression Between Plates 

 11 

    

! 

E 1( ) =

" 1#
x

2

w
2

$ 

% 
& 

' 

( 
) * + + ,( )

2

+-2 # + # ,( )
2

+-2
$ 
% 
& 

' 
( 
) *2

,i

,i
.

2
,i

,i

= " 1#
x

2

w
2

$ 

% 
& 

' 

( 
) * + + ,( )

2

+-2 # + # ,( )
2

+-2
$ 
% 
& 

' 
( 
) ;

E 2( ) =

" 1#
x

2

w
2

$ 

% 
& 

' 

( 
) * +2 + -+ ,( )

2

# +2 + -# ,( )
2$ 

% 
& 

' 
( 
) *2

,j

,j

2
,j

,j

= " 1#
x

2

w
2

$ 

% 
& 

' 

( 
) * +2 + -+ ,( )

2

# +2 + -# ,( )
2$ 

% 
& 

' 
( 
) ;

E 3( ) =

#
4µ x ,

.w
2
* +i +-j( ) # /*

2 ,k

w

2 ,k

= #
4,2/

w
+
8µ,2

x

w
2
i #
8µ,2

x

w
2
j .

 

The matrix has two scalars and a quaternion, which means that the transform is an expansion 

or contraction in the i,j-plane and a rotation in the radial plane.  Since the i and j terms in the 

quaternion are equal and the negative of each other, the axis of rotation is perpendicular to the 

radial vector. 

    

! 

E = E 1( ) , E 2( ) , E 3( )[ ] . 
Therefore, we can write the formula for a location plus a small increment as follows. 

  

! 

"
1
("

0
+ #) = "

1
"
0( ) + # + E "

0
, #( )$# ,

= "
0

+ # + % " "
0( ) + E "

0
, #( )$# .
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The effect of an offset depends non-linearly upon the particular location 

! 

",#( ) , but is radially 

symmetrical in the i,j-plane.  All the components depend on the k component of the location 

vector, because ‘x’ is the magnitude of the k component (

! 

" ).  

Simplification of the extension matrix by the use of cylindrical coordinates 

If we express the location in terms of cylindrical coordinates, 
  

! 

r,",z( ) , then the third 

component of the extension matrix remains the same, but can be rewritten, the second 

component does not depend upon the size of the 

! 

"#, and it is only the first component can be 

simplified. 

  

! 

" # = " #
H

+ " #
V

= µ 1$
x

2

w
2

% 

& 
' 

( 

) 
* +r + ,+

$ -k

w
0

,

µ = r
0

5

4

% 

& 
' 
( 

) 
* 
2

+
15,

8w
$
5

4

. 

/ 

0 
0 

1 

2 

3 
3 

= r
0
4 .

 

We can write the expression for a radial offset as follows. 

    

! 

" 1#
x

2

w
2

$ 

% 
& 

' 

( 
) * r + +( ) # r # +( )( ) = " 1#

x
2

w
2

$ 

% 
& 

' 

( 
) *2+ ,

E r( ) =

" 1#
x

2

w
2

$ 

% 
& 

' 

( 
) *2+

2+
= " 1#

x
2

w
2

$ 

% 
& 

' 

( 
) .

 

Adding an offset to the angle will simply move the transform through that angular excursion, 

so 
  

! 

E "( ) is unity. 

The vertical offset is the same, but it can be written in terms of the radial vector.  If the radius 

is 

! 

"i +#j, then the axis of rotation is 

! 

" =#i $%j, therefore the third component of the extension 

matrix can be written as follows. 

    

! 

E z( ) = "
4#2$

w
+
8µ#2

x

w
2

% = 4#2 "
$

w
+
2µ x

w
2
%

& 

' 
( 

) 

* 
+  

 The expression for the extension matrix is much simpler in cylindrical coordinates. 
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! 

E = " 1#
x

2

w
2

$ 

% 
& 

' 

( 
) , 1 , 4*2 #

+

w
+
2µ x

w
2
,

$ 

% 
& 

' 

( 
) 

- 

. 
/ 

0 

1 
2  ,  therefore

31 3 0 + *( ) = 3
1
3
0( ) + * + E 4*

= 3
0

+ 5 3 3
0( ) + * + " 1#

x
2

w
2

$ 

% 
& 

' 

( 
) 1 4*2 #

+

w
+
2µ x

w
2
,

$ 

% 
& 

' 

( 
) 

- 

. 
/ 

0 

1 
2 4

*r 

*6

*z 

- 

. 

/ 
/ 
/ 

0 

1 

2 
2 
2 

 

The barred vectors are unit vectors in the directions r and z. 

The Orientation Matrix 

Since the i and j axes of the test cube remain in the same direction after the compression, 

independent of the location of the test cube the first component of the orientation matrix must be 

unity.  The elements for the y and z elements are quaternions. 

The transformed i axis is given by the following expression. 

  

! 

" 1#
x

2

w
2

$ 

% 
& 

' 

( 
) * + + ,( )

2

+-2 # +2 +-2
$ 
% 
& 

' 
( 
) *

,i

,i
. 

 

The transformation for the j axis is similar. 

  

! 

" 1#
x

2

w
2

$ 

% 
& 

' 

( 
) * +2 + ,+ -( )

2

# +2 +,2
$ 
% 
& 

' 
( 
) *

-j

-j
. 

The transformation for the k axis is like the calculation for extension. 

  

! 

µ 1"
x + #( )

2

w
2

$ 

% 
& & 

' 

( 
) ) *

+i +,j

+i +,j
" -*

x + #( )k

w

. 

/ 
0 
0 

1 

2 
3 
3 
" µ 1"

x
2

w
2

$ 

% 
& 

' 

( 
) *

+i +,j

+i +,j
" -*

xk

w

. 

/ 
0 

1 

2 
3 

=
µ

w
2

x
2 " x + #( )

2[ ]* +i +,j
+i +,j

" -*
#k

w
,

= "
µ 2x #+ #2( )

4w
2

* +i +,j( ) " -*
#k

w
,  where 4 = +2 +,2

.

 

The transformed i axis is a multiple of i, therefore the unit vector in the direction of the 

transformed i axis is simply i, 

! 

ˆ i = i .  Similarly, j is the unit vector in the direction of the 

transformed j axis, 

! 

ˆ j = j.  The k axis is more complex.  The transformed k axis is given in the 

last set of equations. 
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! 

"
µ 2x #+ #2( )

$w
2

% &i +'j( ) " (%
#k

w
 

The magnitude of the vector is given by the following expression. 

  

! 

" = 2
µ 2x #+ #2( )

$w
2

% 

& 
' 
' 

( 

) 
* 
* 

2

+
+#

w

% 

& 
' 

( 

) 
* 

2

 

The unit vector in the direction of the transformed k axis is the transformed axis over its 

magnitude. 

  

! 

ˆ k = "
µ 2x #+ #2( )
$%w

2
&i "

µ 2x #+ #2( )
$%w

2
'j"

(#

$w
k  

We can replace the scalar multiples of the basis vectors with new symbols to simplify the 

calculations. 

! 

ˆ k = "ˆ # i " ˆ $ j" ˆ % k  

The frame for the 

! 

ˆ i  axis is clearly 

! 

{i, j, k} , since 

! 

ˆ i  is orthogonal to 

! 

ˆ j  and the 

! 

z  axis is 

irrelevant to that calculation. 

! 

Q f
x( ) =1.0 .  

The frame for 

! 

ˆ j  is more difficult to obtain. 

  

! 

Qyz =
"ˆ # i " ˆ $ j" ˆ % k

j
= "ˆ # i " ˆ $ j" ˆ % k( )& "j( ) = "ˆ $ " ˆ % i+ ˆ # k ;

'Q = ˆ # 2 + ˆ $ 2 + ˆ % 2 =1.0,  because " ˆ # i " ˆ $ j" ˆ % k is a unit vector.

 

The unit vector of the rotation quaternion is given by the following expression. 

    

! 

V Qyz( )
"
V

=
#ˆ $ i + ˆ % k

ˆ % 2 + ˆ $ 2
.  

Consequently, the projected z axis is computed as follows. 

  

! 

z = q yz

"

4

# 

$ 
% 
& 

' 
( ) ˆ y )q yz

"

4

# 

$ 
% 
& 

' 
( 

*1

=
1

2
+
1

2

*ˆ + i + ˆ , k

ˆ , 
2

+ ˆ + 2

# 

$ 
% 
% 

& 

' 
( 
( ) j)

1

2
+
1

2

ˆ + i * ˆ , k

ˆ , 
2

+ ˆ + 2

# 

$ 
% 
% 

& 

' 
( 
( 

=
*ˆ , i * ˆ + k

ˆ , 
2

+ ˆ + 2
.

 

Finally, the x axis is the vector of the rotation quaternion. 
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! 

x =  
"ˆ # i + ˆ $ k

ˆ $ 
2

+ ˆ # 2
.  

The frame for the 

! 

y  vector is given by the computed set of vectors. 

! 

fy = x y , y , z y { } =
"ˆ # i + ˆ $ k

ˆ $ 2 + ˆ # 2
, j ,

"ˆ $ i " ˆ # k

ˆ $ 2 + ˆ # 2

% 
& 
' 

( ' 

) 
* 
' 

+ '  

The second component of the orientation matrix is the ratio of this frame of reference to the 

frame of reference 

! 

i, j, k{ } .  To calculate the orientation quaternion for these two frames it is 

simpler to note that the 

! 

y  is j, which is the same as in the unrotated frame of reference.  The two 

frames are aligned at that axis.  All that remains is to determine what rotation will rotate the 

unstrained x axis into 

! 

x .  That is obtained by dividing 

! 

x  by x. 

! 

Q x " x ( ) =

#ˆ $ i + ˆ % k

ˆ % 2 + ˆ $ 2

i
=
#ˆ $ i + ˆ % k

ˆ % 2 + ˆ $ 2
&#i =

#ˆ $ # ˆ % j

ˆ % 2 + ˆ $ 2
,

Q fy( ) =
#ˆ $ # ˆ % j

ˆ % 2 + ˆ $ 2
.

 

This means that the original, pre-strain, frame of reference is rotated about the z axis through 

an angle 

! 

", which is given by the following expression. 

! 

" y = cos
#1 #ˆ $ 

ˆ % 
2

+ ˆ $ 2

& 

' 

( 
( 

) 

* 

+ 
+ .  

Summing up, the change in orientation of the frame of reference for the 

! 

y  component is a 

rotation of 

! 

" y  about the y axis. 

The frame for the 

! 

z  component is obtained in a similar manner. The 

! 

z  component is the 

unit vector, 

! 

ˆ " i + ˆ # j+ ˆ $ k .  The rotation quaternion that rotates 

! 

z  into 

! 

x  is given by the 

following expression. 

  

! 

Qzx =
i

"ˆ # i " ˆ $ j" ˆ % k
= i ˆ # i + ˆ $ j+ ˆ % k( ) = "ˆ # " ˆ % j+ ˆ $ k ;

&Q = ˆ # 2 + ˆ $ 2 + ˆ % 2 =1.0,  because " ˆ # i " ˆ $ j" ˆ % k is a unit vector.
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The unit vector of the rotation quaternion is given by the following expression. 

    

! 

V Qyz( )
"V

=
#ˆ $ j + ˆ % k

ˆ % 2 + ˆ $ 2
= y .  

Consequently, the projected x axis is computed by rotating 

! 

z  though 90° about the vector of the 

rotation quaternion. 

  

! 

x = q
zx

"

4

# 

$ 
% 
& 

' 
( ) ˆ z )q

zx

"

4

# 

$ 
% 
& 

' 
( 

*1

=
1

2
+
1

2

*ˆ + j + ˆ , k

ˆ , 2 + ˆ + 2

# 

$ 

% 
% 

& 

' 

( 
( 
) *ˆ - i * ˆ , j* ˆ + k( ) )

1

2
+
1

2

ˆ + j* ˆ , k

ˆ , 2 + ˆ + 2

# 

$ 

% 
% 

& 

' 

( 
( 

=

ˆ , 2 + ˆ + 2( )i * ˆ - ̂  , j* ˆ - ̂ + k

ˆ , 2 + ˆ + 2
.

 

Finally, as noted above, the y axis is the vector of the rotation quaternion. 

! 

y =
"ˆ # j + ˆ $ k

ˆ $ 
2

+ ˆ # 2
 

The frame for the 

! 

z  vector is given by the computed set of vectors. 

! 

fz = x z , y z , z { } =
ˆ " 2 + ˆ # 2( )i $ ˆ % ̂  " j$ ˆ % ̂ # k

ˆ " 2 + ˆ # 2
,

$ˆ # j + ˆ " k

ˆ " 2 + ˆ # 2
, $ ˆ % i $ ˆ " j$ ˆ # k

& 

' 
( 

) ( 

* 

+ 
( 

, ( 
 

This looks complex, but a little algebraic manipulation will confirm that all the vectors are unit 

vectors and the computation was designed to make sure that they are mutually orthogonal. 

The third component of the orientation matrix is the ratio of this frame of reference to the 

pre-strain frame of reference 

! 

i, j, k{ } .  It is not as straight-forward to calculate the orientation 

quaternion for these two frames as it was for 

! 

y .  Both the swing and spin quaternions must be 

calculated.  We start by calculating the rotation that will swing the pre-strain z axis (k) into the 

post-strain z axis (

! 

" ˆ # i " ˆ $ j" ˆ % k). 

! 

Q z " z ( ) =
#ˆ $ i # ˆ % j# ˆ & k

k
= #ˆ $ i # ˆ % j# ˆ & k '#k = #ˆ & + ˆ % i # ˆ $ j .  

This means that the original, pre-strain, frame of reference is rotated about the vector 

! 

ˆ " i # ˆ $ j through an angle 
  

! 

"
Sw

, which is given by the following expression. 

  

! 

"
Sw

= cos
#1 #ˆ $ ( ) . 
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We can now apply the same rotation to the other two axes of the pre-strain frame of reference 

to obtain the intermediate frame. 

! 

˜ x =
1

2
1 +

ˆ " i # ˆ $ j

ˆ $ 
2

+ ˆ " 
2

% 

& 

' 
' 

( 

) 

* 
* 
+ i+

1

2
1+

#ˆ " i + ˆ $ j

ˆ $ 
2

+ ˆ " 
2

% 

& 

' 
' 

( 

) 

* 
* 

=
ˆ " 

2

ˆ $ 
2

+ ˆ " 
2

i #
ˆ $ ̂  " 

ˆ $ 
2

+ ˆ " 
2

j +
ˆ $ 

ˆ $ 
2

+ ˆ " 
2

k ;

˜ y =
1

2
1 +

ˆ " i # ˆ $ j

ˆ $ 
2

+ ˆ " 
2

% 

& 

' 
' 

( 

) 

* 
* 
+ j+

1

2
1+

#ˆ " i + ˆ $ j

ˆ $ 
2

+ ˆ " 
2

% 

& 

' 
' 

( 

) 

* 
* 

=
ˆ $ ̂  " 

ˆ $ 
2

+ ˆ " 
2

i #
ˆ $ 

2

ˆ $ 
2

+ ˆ " 
2

j +
ˆ " 

ˆ $ 
2

+ ˆ " 
2

k .

 

We need to select a final axis other than 

! 

z  and compute the swing that rotates the 

intermediate axis into the final axis.  In this case the 

! 

y  axis looks like it will involve less 

calculation. 

! 

Q ˜ y " y ( ) =

#ˆ $ j + ˆ % k

ˆ % 2 + ˆ $ 2

ˆ & ̂  % 

ˆ & 2 + ˆ % 2
i #

ˆ & 2

ˆ & 2 + ˆ % 2
j +

ˆ % 

ˆ & 2 + ˆ % 2
k

=
#ˆ $ j + ˆ % k

ˆ % 2 + ˆ $ 2
' #

ˆ & ̂  % 

ˆ & 2 + ˆ % 2
i +

ˆ & 2

ˆ & 2 + ˆ % 2
j#

ˆ % 

ˆ & 2 + ˆ % 2
k

( 

) 

* 
* 

+ 

, 

- 
- 

=
ˆ & 2ˆ $ 

ˆ & 2 + ˆ % 2( ) ˆ % 2 + ˆ $ 2
+

ˆ % 2

ˆ & 2 + ˆ % 2 ˆ % 2 + ˆ $ 2

( 

) 

* 
* 

+ 

, 

- 
- 

+
ˆ % ̂ $ 

ˆ & 2 + ˆ % 2 ˆ % 2 + ˆ $ 2
#

ˆ % ̂  & 2

ˆ & 2 + ˆ % 2 ˆ % 2 + ˆ $ 2

( 

) 

* 
* 

+ 

, 

- 
- 
i

#
ˆ & ̂  % 2

ˆ & 2 + ˆ % 2( ) ˆ % 2 + ˆ $ 2
j#

ˆ & ̂  % ̂ $ 

ˆ & 2 + ˆ % 2( ) ˆ % 2 + ˆ $ 2
k .

Since the both vectors in the ratio are unit vectors, the ratio must be a unit quaternion and thus 

we can state that the scalar component of the ratio is the cosine of the angle of rotation. 

  

! 

cos"Sp =
ˆ # 2ˆ $ 

ˆ # 2 + ˆ % 2( ) ˆ % 2 + ˆ $ 2
+

ˆ % 2

ˆ # 2 + ˆ % 2 ˆ % 2 + ˆ $ 2

& 

' 

( 
( 

) 

* 

+ 
+ 

.  

If we examine the two vectors in the ratio, it may be noted that they can be written in the 

following forms. 

  

! 

"ˆ # j+ ˆ $ k

ˆ $ 
2

+ ˆ # 2
= cos%#j+ sin%#k and 

ˆ & ̂  $ 

ˆ & 
2

+ ˆ $ 
2
i "

ˆ & 
2

ˆ & 
2

+ ˆ $ 
2
j+

ˆ $ 

ˆ & 
2

+ ˆ $ 
2
k = sin%& cos%&i " cos

2%&j+ sin%&k .
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This leads to the scalar term in the ratio being a function of the two angles. 

  

! 

cos"Sp = cos
2#$ cos#% + sin#$ sin#%.  

In the trigonometric notation the vector for the axis of rotation is written as follows. 

! 

vr = cos"# sin"$ % sin"# cos
2"$( ) i % sin"# sin"$ cos"$ j% cos"# sin"$ cos"$ k .  

The symmetry of the equation is more apparent in the trigonometric notation.  It may also 

make another relationship more explicit.  The 

! 

"# angle arose from the swing rotation that 

aligned the 

! 

z axis with the 

! 

z  axis.  It is the angle of the vector that is the axis of rotation for the 

swing.  The 

! 

"#  angle is the angle of the intermediate form of the 

! 

y  axis vector, 

! 

ˆ y , the 

! 

y  axis 

after it has experienced the swing, but before the spin transformation. 

The rotation quaternion for the transformation of the z frame of reference relative to the pre-

strain frame of reference is the combination of the swing transformation and then the spin 

transformation. 

! 

Q fz( ) =
cos

2"# cos"$ + sin"# sin"$( ) + cos"$ sin"# % sin"$ cos
2"#( ) i

% sin"$ sin"# cos"# j% cos"$ sin"# cos"# k

& 

' 
( 
( 

) 

* 
+ 
+ 
, %ˆ $ + ˆ - i % ˆ # j[ ] ,

= . + /i +0j+ 1k( ), %ˆ $ + ˆ - i % ˆ # j( ) ,

= % ˆ $ . + ˆ - / + ˆ # 0( ) + ˆ - . % ˆ $ / % ˆ # 1( ) i + % ˆ # . + ˆ $ 0% ˆ - 1( ) j+ % ˆ # / + ˆ - 0+ ˆ $ 1( )k .

 

If this expression is written out in all of the original terms that we started with, it is a 

horrendous expression.  However, a great deal of the complication comes from the fact that we 

have kept the analysis in symbolic terms.  If one is doing the calculation with numerical values 

the last expression is not much more difficult than any of the other expressions for rotation 

quaternions.  In the end, we always come down to a quaternion with four terms, which 

represents a rotation of a particular angular excursion about a particular vector. 

We have computed the rotation quaternions for all three frames of reference.  Consequently, 

we can write the orientation matrix. 
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! 

" = Q fx( ),Q fy( ),Q fz( )[ ]

= 1.0,
#ˆ $ # ˆ % j

ˆ % 2 + ˆ $ 2
, # ˆ $ & + ˆ ' ( + ˆ % )( ) + ˆ ' & # ˆ $ ( # ˆ % *( ) i + #ˆ % & + ˆ $ )# ˆ ' *( ) j+ # ˆ % ( + ˆ ' )+ ˆ $ *( )k

+ 

, 
- 
- 

. 

/ 
0 
0 

 

 


