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The Diagonal Vector 

It can be shown that, given the three differently directed edges of a parallelepiped box, 

! 

" ,#,${ }, their product, 

! 

" = #$ % , gives useful information about the volume of the box and the 

relationships between the sides or edges of the box (Strained Boxes and Products of Three 

Vectors).   The sum of the three edges, 

! 

D = " +# + $ , is the diagonal and it may also tell us 

interesting things about the box.  The diagonal alone is not particularly interesting, except in 

giving some indication of the size of the box in terms of its linear dimensions.  If we know that 

the box is cubic, then we may compute the length of the sides, 
  

! 

S = 1

3
D , but not their directions, 

except the conical surface that they occupy.  

 

  

! 

" = # $ % $#&1 ;

# = cos' + sin' $
D

D
, ' = 0( 2) ;

% = * +( )$
D

3
, * =

i

U V D( )
, + = 54.7356°.
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However, if we know the diagonal of a box before and after it is stretched then we know the 

direction and magnitude of the strain even though we do not know the shapes of the boxes 

before or after the strain.  That difference between the diagonals prior to and after the distortion 

will be called the directional strain, κ . 

! 

" = #D =D
1
$D

0
. 

Another situation in which the diagonal of a box is useful is in finding a reasonable cubic unit 

box for computing strain when we know only the current box edges.  If we are given a set of edge 

vectors that specify a box, and we need a box that could reasonably be the unit cube that gave 

rise to that box , then we can construct such a box, by computing the unit vectors in the 

directions of the edge vectors and computing the diagonal of their box.  That diagonal gives 

equal weighting to each edge vector and we can use it to create a box that is symmetrical about 

the diagonal, but aligned with the directions of the edge vectors.  If the edge vectors are 

orthogonal, then the unit vectors of the edge vectors are the edge vectors of the unit cube for 

those edge vectors.  If the edge vectors are not orthogonal, then the cubic box is aligned with the 

prime edge vector, the vector that is taken to be the anchor for the orientation.  Generally, we 

are interested in constructing such a unit cube when we want to study the orientation of a box.  

There are other ways of getting unit boxes aligned with a strained box.  Some will be discussed 

here and some will be discussed elsewhere (Finding the Transformation of a Cubic Box: 

the orientation of strained boxes). 

The prime diagonal of the unit cube and other boxes, its difference, and its direction 

 Given a unit cubic box aligned with the universal coordinate axes, 

! 

" ,#,${ } = i, j,k{ },  one 

can readily write down the diagonal of the box. 

  

! 

D
1,1,1[ ] = " +# + $ = i + j+ k . 

If the box is stretched by making the j edge vector twice as long, then the new diagonal is again 

easily written down. 

  

! 

D
1,2,1[ ] = " +# + $ = i + 2j+ k  
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The diagonal of a box is the sum of its edge vectors, thus it reflects changes to 

the shape of the box. 

The difference between the two vectors is j, the difference from the unit cubic box.  The 

deviation of the second box from the unit cubic box is the difference in the diagonal vectors.  

More generally, if the box has the edge vectors 

! 

0.5i,2 j,3k{ }, then its diagonal is given as follows. 

  

! 

D
0.5,2,3[ ] = 0.5i + 2 j+ 3k  

The transformation of the diagonal vector is given by the difference between the vectors. 

  

! 

"D = D
0.5,2,3[ ] #D

1,1,1[ ] = #0.5 i + j+ 2k .  

So far, the diagonal vector has been straight-forwardly related to the three edge vectors and 

the basis vectors.  Consider if the box is rotated 90° about the k axis. 

  

! 

D
2

= " +# + $ = j+ %i( ) + k = %i + j+ k ;

&D = %i + j+ k( ) % i + j+ k( ) = %2i .
 

Even less straight-forward is the situation where the edge vectors are not orthogonal. 

    

! 

" ,#,${ } = i, i + j, i + j+ k{ } % D
S

= 3i + 2j+ k ;

&D = 2i + j .  

The   

! 

"D  is in effect the stretch that occurs when the unit cube box is strained into the current 

configuration.  The direction of the strain is the unit vector of that strain. 

  

! 

"d =
"D

"D
. 

So, for the last difference vector the direction is easily computed.  It is a unit vector in the 

direction of the difference in box diagonals. 
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! 

"d =
2i + j

5
. 

 

 
Changes in the shape of a box are reflected in the shift in the diagonal of the box. 

Projecting the diagonal upon its plane 

If we have a diagonal and a set of edge vectors that sum to it, then it is possible to compute a 

set of three mutually orthogonal vectors that give a orientation frame for the system, which will 

be called the diagonal plane.  The vector of the plane is the unit diagonal vector,   

! 

˜ D .  It points in 

the direction of the diagonal and its plane is perpendicular to it.  There are an infinite set of 

possible vectors that define the plane, but the ones chosen are the projections of the coordinate 

axes into the plane.  To compute these vectors, we must first compute the unit vectors in the 

directions of the edge vectors.   The tilde indicates that the variable is a unit vector. 

! 

˜ " =
"

"
, ˜ # =

#

#
, ˜ $ =

$

$
.  

In the last example the unit edge vectors are as follows. 

! 

˜ " = i , ˜ # =
i + j

2
, ˜ $ =

i + j+ k

3
. 

The next step is to compute the rotation quaternion that rotates the unit diagonal into each of 

the edge vector directions. 
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! 

R" =
˜ " 

#d
=

i

3i + 2j+ k

14

= i $
1

14
%3i % 2j%k( ) =

3% 2k + j

14

= cos 36.6992°( ) + sin 36.6992°( )$
j% 2k

5
.

 

  

! 

R" =
˜ " 

#d
=

i + j

2

3i + 2j+ k

14

=
1

2
i + j( )$

1

14
%3i % 2j%k( ) =

1

28
5 % i + j+ k( )

= cos 19.1066°( ) + sin 19.1066°( )$
%i + j+ k

3
.

 

  

! 

R" =
˜ " 

#d
=

i + j+ k

3

3i + 2j+ k

14

=
1

3
i + j+ k( )$

1

14
%3i % 2j%k( ) =

1

42
6 + i % 2j+ k( )

= cos 22.2077°( ) + sin 22.2077°( )$
i % 2j+ k

6
.

 

 We now know the axis of rotation that will carry the diagonal into each edge vector, but we 

want to carry the diagonal into the plane of diagonal where the plane containing the diagonal 

and the edge vector intersects the plane of the diagonal.  Since the plane of the diagonal is 

perpendicular to the diagonal, the rotation’s angular excursion is in each case a right angle.  

Since the cosine of  90° is zero and the sine is unity, the expressions for the rotation quaternions 

simplify considerably. 

! 

R"

#

2

$ 

% 
& 
' 

( 
) =
j* 2k

5
.

R+

#

2

$ 

% 
& 
' 

( 
) =

*i + j+ k

3
.

R,

#

2

$ 

% 
& 
' 

( 
) =
i * 2j+ k

6
.

 

Each of these is used to rotate the unit diagonal vector though a right angle, to obtain the 

projection of the edge vectors into the plane of the diagonal. 
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! 

P" =
j# 2k

5
$
3i + 2j+ k

14
=

1

70
5i # 6j# 3k( ) ,

P% =
#i + j+ k

3
$
3i + 2j+ k

14
=

1

42
#i + 4 j# 5k( ) ,

P& =
i # 2j+ k

6
$
3i + 2j+ k

14
=

1

84
#4i + 2j+ 8k( ) ,

 

Each of the projection vectors is a unit vector and they all lie in the plane perpendicular to the 

diagonal vector.  The diagonal vector and the diagonal plane form an orientable characterization 

of  the three edge vectors that have been considered here. 

 

If three vectors 

! 

x,y,z{ } are the edge vectors of a box, then one can construct their 

projection upon the plane of the diagonal vector 

! 

" x , " y , " z { }.  The diagonal and its 

shadow plane can be used as indicators of the orientation of a box.  To fully 
determine orientation, one must also specify one of the projection vectors in the 
shadow plane. 

To review the procedure, the three edge vectors are added to obtain the diagonal vector.  

Diagonal vectors can be compared to determine the transformation that separates two different 

vector systems.  The three edge vectors can be replaced by the diagonal vector and its plane by 



 Diagonal Vectors 

 7 

computing the directions of the edge vectors and the rotation quaternions that turn the unit 

diagonal vector into each unit edge vector.  The unit vector of each rotation quaternion can be 

used to rotate the diagonal into the plane of the diagonal, aligned with the edge vectors.  

The unit frame for a diagonal vector 

The diagonal vector is the sum of the three edge vectors and its deviation from the diagonal of 

a unit cube tells us the direction in which the box is being stretched or compressed.  The strain 

quaternion is the product of the three edge vectors.  It has a scalar component that is the volume 

enclosed by a parallelepiped with the three edge vectors and a vector component that encodes 

the rotations of the edge vectors relative to each other.  It expresses the internal strain of the box 

bounded by the edge vectors. 

Since the box may be translated, rotated, and/or strained and we would like to evaluate each 

of these transformations independently it is useful to abstract each from the common 

transformation.  Translation is not a function of the edge vectors and they contain no 

information about location, therefore we do not have to worry about translation at this time.  

Orientation shift is the relationship between a base orientation frame and the current orientation 

frame.  An orientation frame is a set of three mutually perpendicular unit vectors.  When there is 

no strain, the change in orientation is the ratio of the current orientation frame to the base 

orientation frame.  If there is concurrent strain then, the edge vectors are not orthogonal or they 

have lengths other than unity or both forms of strain are present.   When the distortion is only 

the lengthening or contraction of an axis, then one may obtain an orientation frame by 

computing the directions (unit vectors) of the edge vectors and using them as the orientation 

frame.  If the edge vectors are not orthogonal, then it is  necessary to compute a set of mutually 

perpendicular unit vectors that have the same orientation as the edge vectors.  That set of edge 

vectors also act as the base for computing the strain due to internal shifts in the matrix.   

The problem with changes of orientation involving non-orthogonal edge vectors is creating a 

useful definition of their orientation frame and devising means to compute it.  That is where the 

diagonal vector may be useful.  If we compute the directions of the edge vectors, that is their unit 

vectors, then compute the unit diagonal vector of that set of vectors, we can build a frame on 

those vectors.  In computing a base orientation frame one assumes that the standard of 
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comparison is a cubic box that is aligned with the current box, that is has the same orientation.  

If the strain is only changing the lengths of the unit edge vectors, then the cubic box is just the 

unit vectors of the current box’s edge vectors.  If there is rotation of the edge vectors relative to 

each other, then the best guess of the original cubic box is one that is symmetrical about the 

diagonal of the unit box of the edge vectors. 

When the edge vectors are mutually orthogonal, then the calculation is relatively straight-

forward.  Let the edge vectors be 

! 

" ,#,${ }, which are mutually orthogonal, but not necessarily of 

equal length.  The unit edge vectors are obtained by dividing by their length.   

! 

˜ " =
"

"
, ˜ # =

#

#
, ˜ $ =

$

$
.  

The diagonal vector is the sum of the unit edge vectors. 

  

! 

D = ˜ " + ˜ # + ˜ $ % ˜ D =
˜ " + ˜ # + ˜ $ 

3
 

The rotation quaternion for turning the unit diagonal into the unit edge vector is the ratio of the 

unit edge vector to the unit diagonal vector.  Assuming that 

! 

" ,#,${ } is a right–handed system - 

  

! 

R" =
˜ " 
˜ D 

= #
1

3
˜ " $ ˜ " + ˜ % + ˜ & ( )

= #
˜ " 2 + ˜ " ̃  % + ˜ " ̃ & 

3
=
1+ ˜ % # ˜ & 

3

=
1

3
+

˜ % # ˜ & 

3
=
#1

3
+

2

3

˜ % # ˜ & 

2

= cos ' + sin ' $
˜ % # ˜ & 

2
, ' = 54.7356° .

 

  

! 

R" =
˜ " 
˜ D 

=
#1

3

˜ " $ ˜ % + ˜ " + ˜ & ( )

= #
˜ " ̃  % + ˜ " ̃  " + ˜ " ̃ & 

3
=

˜ & +1# ˜ % 

3

=
1

3
+

˜ & # ˜ % 

3
=
1

3
+

2

3

˜ & # ˜ % 

2

= cos ' + sin ' $
˜ & # ˜ % 

2
, ' = 54.7356° .
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! 

R" =
˜ # 
˜ D 

=
$1

3
˜ " % ˜ # + ˜ & + ˜ " ( )

= $
˜ " ̃  # + ˜ " ̃  & + ˜ " ̃ " 

3
=

˜ # $ ˜ & +1

3

=
1

3
+

˜ # $ ˜ & 

3
=
1

3
+

2

3

˜ # $ ˜ & 

2

= cos ' + sin ' %
˜ # $ ˜ & 

2
, ' = 54.7356° .

 

In this case, the calculation of the frame is particularly easy because frame vectors are the unit 

vectors that result from rotating the diagonal though an angle of 

! 

"  about the unit vector of each 

of the above rotation quaternions.  That is precisely what we have just computed so the frame 

vectors are the unit vectors of the edge vectors, 

! 

˜ " ,˜ # ,˜ $ { }. 

  

! 

R" #
˜ D = ˜ " ,

R$ #
˜ D = ˜ $ ,

R% #
˜ D = ˜ % .

 

In the derivation of the formulae for the rotation quaternions, there was no reference made to 

the unit edge vectors being orthogonal, so the same argument applies to non-orthogonal unit 

edge vectors.  However, if one is going to construct an orientation frame from the diagonal 

vector, we can not rotate the diagonal vector through an angular excursion of 

! 

"  for each axis. 

  Orientation for boxes that do not have mutually orthogonal  edge vectors 

Orientation is not uniquely determined for non-orthogonal edge vectors.  It is necessary to 

chose a prime vector and a secondary vector.  Let the prime unit edge vector be 

! 

"  and the 

secondary edge vector be 

! 

" .  Any two successive vectors in ring permutations of the vector set 

would be satisfactory, 

! 

",#{ }, #,${ }, $,"{ }( ) .   

There are several options for orientation frames, depending on how one interprets 

orientation.  The first is to take the diagonal vector as the principal index of orientation and 

construct a frame symmetrically about it. One turns the diagonal through the prime vector to 

form an angular excursion of τ, then rotates that vector through two successive 120° rotations 

about the diagonal vector, to obtain the other two orientation vectors. In this construction the 
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orientation frame is symmetric about the diagonal vector.  Any of the edge vectors can be the 

anchor for such a symmetrical orientation frame.   

Another approach is to take the prime vector and it’s relationship to the secondary vector as 

the principal index of orientation.  The vector of the quaternion that turns the prime vector into 

the secondary vector is taken to be the tertiary orientation vector and the vector of the 

quaternion that turns the tertiary vector into the primary vector is taken to be the secondary 

orientation vector.  We consider each of these approaches in turn in the following sections. 

Symmetrical Orientation Frame 

The diagonal might be the sum of the edge vectors,   

! 

D = " +# + $ , or the sum of the unit edge 

vectors,   

! 

˜ D = ˜ " + ˜ # + ˜ $ .  The unit diagonal vector,   

! 

˜ D , is computed.  The  unit diagonal vector is 

turned through an angular excursion of 

! 

"  towards the prime unit edge vector, to obtain the 

prime vector of the orientation frame.  The prime vector may be any of the three edge vectors; 

we will use 

! 

" , for the present. 

      

! 

R" =
˜ " 
˜ D 

,

ˆ " = R" #( )$ ˜ D = U V R"( )$ ˜ D ,

ˆ % = R"

&

3

' 

( 
) 
* 

+ 
, $ ˆ " $R"

&

3

' 

( 
) 
* 

+ 
, 

-1

, ˆ . = R"

2&

3

' 

( 
) 

* 

+ 
, $ ˆ " $R"

2&

3

' 

( 
) 

* 

+ 
, 

-1

.

 

Once the prime vector is calculated, the other two orientation frame vectors are obtained by 

rotating it through 120°  and 240° about the unit diagonal vector.  Because the 

! 

ˆ "  axis is not 

orthogonal to the diagonal vector, it is necessary to use Euler’s formula to obtain the other frame 

axes.  In Euler’s formula the quaternion angle is half the angular excursion, therefore we use 60° 

and 120° of rotation, rather than 120° and 240° 

Note that the results will be different depending upon which diagonal vector is used as the 

basis for the unit diagonal vector.  The first option is a function of the directions and the lengths 

of the edge vectors.  The second option depends only on the directions.  In either case the 

orientation frame is symmetrical about the unit diagonal vector.  However, the first option will 

prove unsatisfactory as an index of orientation (see below).  Note that the orientation frame will 

also depend upon the edge vector chosen as the basis of the frame. 
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Orientation Frame based on the prime plane 

It might be argued that the critical factor in orientation is the relationship between two of the 

edge vectors, for instance,   

! 

" and # .  The first orientation vector is taken to be the unit vector of 

! 

"  and we compute the perpendicular to the plane determined by   

! 

" and # , which is the tertiary 

frame vector, then the ratio of the primary vector to the tertiary to find the secondary orientation 

frame vector. 

! 

ˆ " =
"

"
, ˆ # =

$

$

ˆ " 
, ˆ $ =

ˆ " 

ˆ # 
. 

Consideration of representative cases 

Consider the situation in which the box becomes twice as long in one direction and 

unchanged otherwise.  It is reasonable that one would consider that there has been no change in 

orientation and that the strain is directional and volumetric.  The diagonal of the box is 

  

! 

D = " + 2# + $ , which has a unit vector 
  

! 

˜ D =
" + 2# + $

6
.  The diagonal of the box with unit 

vectors in the directions of the edge vectors is   

! 

D
d

= " +# + $ , which has a unit vector of 

  

! 

˜ D =
" +# + $

3
.  Without calculation, one knows that the frame vectors for the symmetrical 

orientation frame associated with the diagonal is 

! 

" ,#,${ }.  The symmetrical orientation frame 

for the first diagonal is different, because the direction of the diagonal is different.  We can see 

that is true, if we set 

! 

" ,#,${ } = i,2j,k{ } . 

    

! 

R" =
˜ " 
˜ D 

=
i

i + 2j+ k

6

=
#1

6
i$ i + 2j+ k( ) =

1+ j# 2k

6

=
1

6
+

5

6

j# 2k

5
= cos65.9052° + sin65.9052°$

j# 2k

5
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! 

ˆ " = R" #( )$ ˜ D = U V R"( )$ ˜ D = cos  #+ sin  # $
j% 2k

5

& 

' 
( 

) 

* 
+ $
i + 2j+ k

6

=
1

3
+

2

3
$
j% 2k

5

& 

' 
( 

) 

* 
+ $
i + 2j+ k

6
= 0.9811i + 0.1733 j+ 0.0866k ,

ˆ , = ˜ D 
-

3

& 

' 
( 
) 

* 
+ $ ˆ " $ ˜ D 

-

3

& 

' 
( 
) 

* 
+ 

%1

=
1

2
+

3

2

i + 2j+ k

6

& 

' 
( 

) 

* 
+ $ ˆ " $

1

2
%

3

2

i + 2j+ k

6

& 

' 
( 

) 

* 
+ 

= %0.1370i + 0.9367 j% 0.3222k,

ˆ . = ˜ D 
2-

3

& 

' 
( 

) 

* 
+ $ ˆ " $ ˜ D 

2-

3

& 

' 
( 

) 

* 
+ 

%1

= %
1

2
+

3

2

i + 2j+ k

6

& 

' 
( 

) 

* 
+ $ ˆ " $ %

1

2
%

3

2

i + 2j+ k

6

& 

' 
( 

) 

* 
+ 

= %0.1370i % 0.3042 j+ 0.9427k .

 

The symmetrical orientation frame based on the diagonal vector of the stretched box is not 

aligned with the axes of the box prior to the stretch.  Consequently, simply stretching the box is 

sufficient to appear to rotate the box when using that approach.  Therefore, it is not desirable to 

define orientation in such a way.  We can discard that interpretation of orientation as not being 

compatible with our intuition with how orientation behaves.   

So far, the symmetrical orientation frame based on the directions of the edge vectors appears 

to be satisfactory, because it does not indicate an orientation change with stretching alone and 

our intuition is that stretching a region of the matrix does not change its orientation. 

The prime plane approach will also indicate that there was no change in orientation, because 

the relationship between the 

! 

"  and 

! 

"  edge vectors and their relations with the universal 

coordinates are not changed by the stretching alone. 

! 

"

#
= $ ;

#

$
=" % #&"&$&# . 

Now, let us consider a slightly more distorted box, one in which there is shear.  Assume that 

the upper surface of the box moves parallel with the lower surface, so that the 

! 

"  edge vector is 

tilted with respect to the perpendicular of the   

! 

",#$plane .  Let the edge vectors be 

! 

" ,#,$ + 0.1%#{ } .  The strain quaternion is readily computed.  It is the product of the three edge 

vectors in the right hand order.  In the unit cubic box the three edge vectors are 

! 

" ,#,${ } and the 

volume, 
  

! 

S "#$( ) , is 1.0.  In the sheared box the volume remains 1.0, because the width, depth, 
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and height are the same.  There is a vector component that encodes the shift in the third edge 

vector relative to the   

! 

",#$plane .  It is a rotation about the axis of 

! 

" . 

  

! 

" = # $% $ 0.1% + &( ) = # $0.1%2 + #%& = '0.1# + #%& ,

#%& =1.0 ,  thus -

" =1.0 ' 0.1# .

  

The vector portion of the strain quaternion gives the rotation of the third component of the 

edge vectors relative to the perpendicular to the   

! 

",#$plane . 

! 

sin" = 0.1 # " = 5.74° .  

The rotation is about the 

! 

"  unit vector. 

 


