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Shear 

At rest, description of an unstressed block 

 Imagine a block of material that is initially at rest, with no external forces.  For that block we 

pick a convenient null point and an internal coordinate system.  A convenient point is set to be 

the origin of the coordinate system.  A set of basis vectors {x, y, z} is constructed at the origin, 

arranged so that they point in the three cardinal directions of the coordinate system.   

Every point in the block is specified relative to the origin by a location vector, λ , that 

extends from the origin to the point.  The value of λ  depends upon the choice of origin, but, if 

the origin is changed, one can easily compute the new values of λ , by adding the location of the 

new origin in the old coordinate system to the location vector relative to the old origin. 
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A judicious choice of the origin can often greatly simplify an analysis. 

At each point, an extension vector, ε, is constructed that is the sum of three unit vectors 

aligned with the coordinate axes.  The extension vectors can be viewed as test vectors, for 

visualizing the distortion that occurs in a region of the block.   

An extension vector, 

! 

" , may be resolved into coordinates by projecting it upon a set of three 

linearly independent vectors. 

    

! 

" = " o # x + " o # y + " o # z = "x + "y + "z ,

where # x , # y ,  and # z  are linearly independent.
 

If one selects a reference set of coordinates 

! 

" x , " y , " z { }then ε  is the diagonal of a box in that 

coordinate system.  The volume of that box is given by the following expression, which is 

equivalent to the triple product of vector analysis. 
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Note that the volume of the box depends upon the choice of coordinates.  It would be usual to 

choose the universal coordinates of the block as the box’s sides, but other coordinates may be 

more revealing in some situations.  The volume will always be zero if one of the coordinates is 

aligned with the extension vector and maximal when the coordinate axes are orthogonal and the 

projections most nearly equal. 
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At each location in the block, one selects a frame of reference, f = {f1, f2, f3}, to express the 

orientation at that location.  In an unstressed block, it is usually simplest to choose a frame that 

is aligned with the coordinate system. 
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However, a judicious choice of the orientation frames of reference may occasionally greatly 

simplify an analysis or highlight an effect.  Orientation is arbitrary, but some choices generally 

seem more natural to the structure under study.  For instance, the directions back to front, 

bottom to top, and left to right side are often the most intuitive choices of axes for a frame of 

reference. 

Strain 
Strain is the change in a material matrix when it is distorted by forces.  The forces that produce 

the strain are called stress.  In this essay, we will be mostly concerned with the distortions and 

little concerned with the details of the stress forces.  In particular, we are concerned with the 

mathematical description of strain.  It will be argued that there are several types of strain and 

different types of strain may be relevant in different situations. 

It is easy enough to describe the transformation associated with strain in particular instances, 

but we have to be sure to express the change in language that is as generally applicable as 

possible.  Language that captures the change and nothing more than the change in a useful 

mathematical concept. 

Location Strain 

If the block is stressed, then we expect points within the block to shift in response to the points 

of application of the forces, the directions of the forces, and the strengths of the forces.  As the 

material of the block shifts, the location vectors of points within the block change in an consistent 

manner. 

Let the original location of an internal point be indicated by the vector 
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after the forces are applied be
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location is one-dimensional and the displacement is uniform and proportional to location, then it 

would make sense to define the coefficient of strain as the ratio of the change to the location. 
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For a length of 

! 

" , the strain is 

! 

"# = $# % # .  The coefficient of strain is a function of the 

magnitude of the force producing the strain. 

Sometimes we are interested in lengthening or contraction in one dimension and this 

definition is completely appropriate.  It is normally how strain is defined, but it depends on 

selecting the axis of lengthening or contraction as the direction of the measurement.  In principle, 

it is always possible to resolve all the forces acting at a point into a single force that has a single 

direction of action.  Consequently, this approach is, in principle, sufficient.  However, in a three-

dimensional matrix the force is not necessarily in a constant direction at all points, so we will try 

to develop am more general formulation. 

Location Strain in a Three-dimensional Matrix 

 

In the example box illustrated above, we have chosen the box to line up with the direction of 

the force so the magnitudes of the vectors can be used.  In this situation, the coefficient of strain 

is given by the following formula. 
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The magnitude of the strain, 

! 

"# , is divided by the location relative to the origin, 

! 

"
0

, the 

length in this case, and it is in the direction of the force, F.  Consequently, the coefficient of 

strain, 

! 

" , is a vector. 
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If we look at this relation more closely, it is apparent that the relevant interval is  not the 

length of the location vector.  If we started with

! 

"
1
, then the length would not be the magnitude 

of the 

! 

"
1
 vector, but the length of the 

! 

"
0
, vector, that is the projection of the location vector 

upon a unit vector perpendicular to the force vector.  Let f  be a unit vector in the direction of 

the force and let p be a unit vector perpendicular to f that points from the point of application of 

the force towards the origin of the coordinate system.  If 
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A

 is the point of application of the 

force and 
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"
0
 is the origin for the location vectors, then there is a vector from the origin to the 

point of application, 
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, that lies in the same plane with the perpendicular to the force 

vector, so we can compute the quaternion that that rotates the force vector into 

! 

" .  Both are 

reduced to unit vectors so that the rotation quaternion is a unit quaternion. 
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To obtain the perpendicular vector, p, one rotates the unit vector in the direction of the force 

though 90° in the direction of 
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This allows us to write down the expression for the new location after a strain. 
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Note that the second term in the expression is a scalar times a vector. 

! 

    

! 

"
0
op( ) is a scalar and # is a vector . 

In the case of uniform linear strain the strain is a vector, as just illustrated. 

Extension Strain 

If the block of material is visualized as having a regular array of “marker” points at regular 

intervals throughout the block, then extension may be defined relative to those markers and 

distortions of the material in the block may be expressed as changes in the array of markers.  

This interpretation leads to a definition of extension strain.   

One could derive extension shear from location shear since extension is the difference 

between two locations.  Therefore, it resembles location strain in being a ratio of two vectors, but 
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the dependence on the origin drops out, because of one location being subtracted from the other.  

There may still be a dependence upon location, because the location strain may be a function of 

location. 

Extension is the difference between two specific locations, 
  

! 

"#  and "$ , which shift relative to 

each other during a strain. 
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The difference between the two extensions is the ratio of the extension vectors. 
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One extension that is often useful to examine is the diagonal of a small box that is a cube in 

the unstressed block and a rhomboid in the stressed block.  There are also three anti-diagonals 

that extend from one of the proximal corners of the box to the opposite distal corner.  Let us 

agree to name them for the proximal corner, so that the vector from the tip  of the z unit vector 

to the sum of the x and y unit vectors is the z anti-diagonal.  As mentioned above, the diagonal 

may be used to compute the volume of the box formed by the three coordinate axes. Changes in 

the volume of the box may indicate local compression or de-compression of the material of the 

block. 

Orientation Strain 

Each point in the block of material has an associated orientation.  In the unstressed block it 

would be natural to let all the orientations be the same and the orientation axes to be aligned 

with the coordinate axes, however, there is no necessity to do so.  Another arrangement might be 

more useful in some circumstances. 

When the block is stressed, it will often lead to internal rotation of the substance of the block.  

When that happens, the orientation of the substance will change.  Note that there are many 

situations in which the substance of the block will only translate.  The illustration above shows a 

linear shear in which there is only translation.  When there is only translation, then there is no 

change in orientation.  There must be rotation to change orientation.  That is the principal 

difference between linear strain and rotational strain. 
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Orientation strain is defined similarly to the previous two types of strain.  The change in 

orientation is the ratio of the orientations.  Orientation is encoded in the frame of reference for 

the locations. 
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Orientation strain is also a quaternion, however, it is not as straight-forward to take the ratio of 

two orientations as it is two vectors.  Basically, it is a matter of finding the rotation that carries 

the initial orientation into the final orientation.  This has been described in detail elsewhere 

(Langer, 2004).  In general terms, it involves finding the rotation,   

! 

Q
Sw

, that swings one axis in the 

initial frame of reference into alignment with its direction in the final frame of reference, then 

rotation the frame about that axis, 
  

! 

QSp, to bring the other axes into alignment.  Both rotations 

are quaternions.  The product of those rotation quaternions, in the opposite order, 
  

! 

QSp "QSw , is 

the quaternion that rotates the initial orientation into the final orientation.  However, since the 

combined quaternion is a conical rotation and the two component rotations are planar rotations, 

suitable adjustments must be made to the angles of the quaternions, namely halving their angles 

before multiplying them. 
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Once we establish that there is always a quaternion that will rotate the initial frame of 

reference into the final frame of reference, then we know that there is always an orientation 

strain that describes the transformation. 
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