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Torsional Strain 

In torsion the matrix rotates about a center of rotation.  In the framework that will be used 

here, one plate rotates relative to the other plate.  The matrix flows in such a manner as to 

minimize the change of volume everywhere in the matrix.  In this situation, the shear is 

proportional to the distance from the axis of rotation and the magnitude of the angular 

excursion.  It is also a function of the distance of the location from the fixed plate.  In fact, the 

situation is comparable to the arrangement for linear shear, except that the natural reference 

framework is cylindrical rings concentric about the axis of rotation. 

If the location prior to the torsion is 

! 

"
0
 and after is 

! 

"
1
, then 

! 

"
1

= "
0

+ # " .  For now, it will 

be assumed that the axis of rotation, 

! 

" , is perpendicular to the two plates, so that the 

perpendicular is a unit vector parallel with the axis of rotation. 

! 

p =
"

"
. 

The initial location vector is resolved into two component vectors, one parallel to the 

perpendicular, h, and one perpendicular to it, r. 

  

! 

h = "
0

•p and r = "
0
#h .  

We will also need to designate a tangential unit vector, 

! 

" , that is perpendicular to 

! 

rand

! 

h. 

! 

" =

#

r

#

r

.  

The total shear, the movement at the moving plate is the angular excursion times the radial 

distance, concentric with the axis of rotation. 

! 

" = #$ r  

However, the shear is along a circular trajectory, therefore it is necessary to compute the final 

location and subtract the initial location to obtain the actual excursion. 

! 

" #
0( ) = q $r #

0( ) % r #( )
0
, q = cos&+ sin&$' .  

 Since 

! 

" # $ , there is a tendency for the matrix to be drawn centrally, but that space is 

already occupied by the material of the more central rings, so the matrix must flow in its own 



 Torsion 

 2 

ring.  Still, there will be in centrally directed force that will tend to compress the matrix.  Since a 

ring is essentially a flat surface we can, as it were, peel it away to treat the flow as we did in linear 

shear and lay it back into its original position to see how that flow, f, appears in situ.   

 

The upper (green) plate is rotated through an angular excursion of θ 
about an axis of rotation, ρ. Producing a rotational shear between the 
two plates.  For locations between the plates, λ0, the flow of the matrix is in a 
ring concentric with the axis of rotation to an extent that depends upon the 
distance from the location to the fixed plate (blue) and the separation between the 
two plates, 2χ. 

We have already derived the expression for 

! 

" # , given 

! 

"
0
, when the shear is linear.   

  

! 

"
1

= "
0

+ # " ,

"
1

= "
0

+
3

4

$

%

x
3

3
& x

2%
' 

( 
) 

* 

+ 
, ,

x = "
0
•p .
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With several changes, a similar expression will describe torsional strain.  The total shear is an 

angular excursion,

! 

" = #$ r , and the perpendicular offset is 
  

! 

x = h .  The 

! 

" #  is also expressed as 

an angular excursion.  

! 

" =
# $

r
. 

The distance 

! 

" #  is the distance within the ring, rather than the chord that connects the initial 

and final locations.  Consequently, the expression relating the initial and final locations can be 

written as follows. 

  

! 

"
1

= T # "
0
,

T = cos$ + sin $#% ,

$ =
3

4

&

'

x
3

3
( x

2'
) 

* 
+ 

, 

- 
. #
1

r
,

x = h = "
0
•p = "

0
•
%

%
.

 

With torsional shear, the final location is more concisely expressed as a quaternion product 

with the initial location.  Note that the angular excursion can be reduced to a scalar factor times 

the total angular shear.  

  

! 

" = #$
3

4 %

x
3

3
& x

2%
' 

( 
) 

* 

+ 
,  

This means that the angular excursion of the flow is independent of the distance from the axis of 

rotation, which is in accord with our expectations.  This is of physical importance, because it 

means that the strain is uniform throughout the radius of the matrix. 

There is a type of torsion in which the strain is not uniform radially.  If the torque force is 

applied to the outer surface of the matrix, as in unscrewing a jar lid, then the strain differential is 

between the outer surface and the axis of rotation.  If the tangential force is assumed to be 

uniform over the outer surface, then the strain is greatest at the outer surface and it is attenuated 

as one moves centrally.  However, unless the center is fixed, the mass will begin to rotate as a 

unit and the strain will be resolved.  A variant of this scenario that is potentially more interesting 

is when the mass is fixed or retarded by other forces and a torque force is applied to a portion of 

the outer surface.  For instance, when the mass is a bone shaft and the torque is due to the pull at 
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a muscle attachment.  That problem is far more difficult and therefore will be deferred until we 

have more experience with strain. 

Extension Matrix 

In the following, we will consider the torsional strain described above.  As with linear shear, 

the local strain is most dependent upon the distance from the fixed plate, ‘x’.  If we shift the 

initial location centrally or peripherally (

! 

" r ), there is no change in the angular excursion of the 

location, 

! 

" #$
.  There is a change in the actual distance moved, but it is proportional to 

! 

r .  If 

the shift is around the ring (

! 

"#), then there is no change in the magnitude of the strain 

excursion.  Obviously, the strain is in a different direction, because we have moved upon a circle 

and the strain is tangential to the circle.  A shift in the location relative to the fixed plate (

! 

h ), will 

cause a change in the magnitude of the strain, just as it did in linear strain. 

The description of the strain was given above.  It is repeated here so that we can examine it 

for its dependencies upon the three types of variation of location.  The dependencies may be in 

the initial location or the strain quaternion.  

  

! 

"
1

= T # "
0

r,$, x( ) ,

T = cos% + sin %#& ,

% =
3

4

'

(
x )

1

(2

x
3

3
)
2x

2(

2
+ x (2

* 

+ 
, 

- 

. 
/ 

0 

1 
2 

3 

4 
5 #
1

r
,

x = h = "
0
•p = "

0
•
&

&
,

r = r , ' = r #6 .

 

If the radial distance of the initial location is changed, then the change in the final location is 

calculated as follows. 

  

! 

"
1

r # $( ) = cos%+ sin % k[ ]& r # $( ) • i( )i + r # $( ) • j( )j+ r # $( ) •k( )k[ ] ,

"
1

r + $( ) = cos%+ sin % k[ ]& r + $( ) • i( )i + r + $( ) • j( )j+ r + $( ) •k( )k[ ] ,

% =
3

4

'

(
x #

1

(2

x
3

3
# x

2( + x (2
) 

* 
+ 

, 

- 
. 

/ 

0 
1 

2 

3 
4 &
1

r
.

 

Let us rewrite the equations to simplify the mechanics of the calculation by concealing the 

unnecessary detail until it is needed. 
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! 

"
1

r # $( ) = % +&k[ ]' ri # $i( ) i + rj # $ j( )j+ rk # $k( )k[ ] ,

"
1

r + $( ) = % +&k[ ]' ri + $i( ) i + rj + $ j( )j+ rk + $k( )k[ ] .
 

The difference between these two locations is given by the following expression. 

! 

2 "#i $%# j( ) i + "#j +%#i( )j[ ]  

The first extension matrix component is the ratio of this difference to twice the offset. 

  

! 

Q
r

=
2 "#i $%# j( ) i + "#j +%#i( )j[ ]

2 #i i + # j j( )
=
"#i $%# j( ) i + "#j +%#i( )j

#i i + # j j
.  

We do not change the fundamental geometrical relationships if we rotate our coordinate 

system so that the i axis is aligned with the r vector.  However, doing so makes it apparent that 

the extension quaternion is the rotation quaternion for the rotation shear.  The radial offset is 

rotated just like the initial location. 

  

! 

Q
r

=
"#i +$#j

#i
=
" i +$j

i
= " i +$j( )%&i = "+$k = T .  

Therefore, the final position for a location plus a radial offset is the sum of the transformations of 

the two components. 

  

! 

"
1

= T # "
0

+ $
r( ) = T # "

0
+ T #$

r
.  

There is no explicit dependence of the extension matrix upon 

! 

", other than the initial 

location’s component and that was embedded in the analysis immediately above.  Therefore the 

second component of the expansion matrix is unity. 

  

! 

"
1

= T # "
0

+ $%( ) = T # "
0

+ $% ,  thus

Q% =
$%

$%
=1.0 .  

 The vertical component is more complex than the first two components.  The is a complex 

dependence upon the 
  

! 

h = x  variable, but it is much like the vertical component for linear shear.  

We start much as for the radial component, except 

! 

" is not a constant. 
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! 

"
1

x # $( ) = cos

( 
% 

2
+ sin

( 
% 

2
k

& 

' ( 
) 

* + 
, rii + rj j+ rk # $( )k[ ], cos

( 
% 

2
# sin

( 
% 

2
k

& 

' ( 
) 

* + 
,

"
1

x + $( ) = cos

) 
% 

2
+ sin

) 
% 

2
k

& 

' ( 
) 

* + 
, rii + rj j+ rk + $( )k[ ], cos

) 
% 

2
# sin

) 
% 

2
k

& 

' ( 
) 

* + 
,

( 
% =

3

4

-

.3
#

x - $( )
3

3
+ x - $( )

2

.
& 

' 
( 
( 

) 

* 
+ 
+ 
,
1

r
,

) 
% =

3

4

-

.3
#

x + $( )
3

3
+ x + $( )

2

.
& 

' 
( 
( 

) 

* 
+ 
+ 
,
1

r
.

 

These equations reduce to equations that vary in the i and j terms. 

    

! 

"
1

x # $( ) = ri cos
( 
% # rj sin

( 
% ( ) i + rj cos

( 
% + ri sin

( 
% ( )j+ rk # $( )k ,

"
1

x + $( ) = ri cos
) 
% # rj sin

) 
% ( ) i + rj cos

) 
% + ri sin

) 
% ( )j+ rk + $( )k .

 

The difference between the two location transformation is obtained readily. 

    

! 

" # = #
1

x + $( ) % #1 x % $( ) ,

= ri cos
) 
& % rj sin

) 
& ( ) % ri cos

( 
& % rj sin

( 
& ( )[ ] i + rj cos

) 
& + ri sin

) 
& ( ) % rj cos

( 
& + ri sin

( 
& ( )[ ]j+ 2$k ,

= ri cos
) 
& % cos

( 
& ( ) % rj sin

) 
& % sin

( 
& ( )[ ] i + rj cos

) 
& % cos

( 
& ( ) + ri sin

) 
& % sin

( 
& ( )[ ] j + 2$k,

= %2' ri S % rj C[ ] i % rjS + ri C[ ]{ } j + 2$k where

S = sin

) 
& +

( 
& 

2
' sin

) 
& %

( 
& 

2

( 

) 
* 

+ 

, 
-  and C = cos

) 
& +

( 
& 

2
' sin

) 
& %

( 
& 

2

( 

) 
* 

+ 

, 
- .

  

The dependence upon the offset lies in the κ terms. 

    

! 

) 
" +

( 
" 

2
=

1

2
#
3

4

$

%3

x - &( )
3

+ x + &( )
3

3
+ % x + &( )

2

+ x - &( )
2[ ]

' 

( 
) 
) 

* 

+ 
, 
, 
#
1

r

=
3

4

$

%3

x
3

3
- x&2 + x

2% + &2%
' 

( 
) 

* 

+ 
, #
1

r
,  and 

) 
" -

( 
" 

2
=

1

2
#
3

4

$

%3

x - &( )
3

- x + &( )
3

3
+ % x + &( )

2

- x - &( )
2[ ]

' 

( 
) 
) 

* 

+ 
, 
, 
#
1

r

=
3

4

$

%3
-x

2&-
&3

3
+ 2x&%

' 

( 
) 

* 

+ 
, #
1

r
.

 

For computation, the third line of the expression for 

! 

" #  is perfectly adequate.  The 

quaternion that transforms a vertical off set of 

! 

±" into 

! 

" #  is the ratio of the second variable to 

the first . 
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! 

Qk =
ri cos

) 
" # cos

( 
" ( ) # rj sin

) 
" # sin

( 
" ( )[ ] i + rj cos

) 
" # cos

( 
" ( ) + ri sin

) 
" # sin

( 
" ( )[ ] j + 2$k

2$k

= ri cos
) 
" # cos

( 
" ( ) # rj sin

) 
" # sin

( 
" ( )[ ] i + rj cos

) 
" # cos

( 
" ( ) + ri sin

) 
" # sin

( 
" ( )[ ] j + 2$k[ ]%

#2$k

4$
2

=1#
rj cos

) 
" # cos

( 
" ( ) + ri sin

) 
" # sin

( 
" ( )[ ]

2$
i +

ri cos
) 
" # cos

( 
" ( ) # rj sin

) 
" # sin

( 
" ( )[ ]

2$
j

 

The extension matrix for torsion is the combination of the three quaternions that have just 

been computed. 

      

! 

E
Torsion

= Qr ,Q" ,Qk{ }

= T,1.0,1#
rj cos

) 
$ # cos

( 
$ ( ) + ri sin

) 
$ # sin

( 
$ ( )[ ]

2%
i +

ri cos
) 
$ # cos

( 
$ ( ) # rj sin

) 
$ # sin

( 
$ ( )[ ]

2%
j

& 
' 
( 

) ( 

* 
+ 
( 

, ( 
.
 

Orientation Matrix 

The net effect of a torsional strain is to carry a location around a concentric ring.,  

Consequently, we would expect there to be a rotation of the frame of reference.  To start, let us 

review the transformation of location. 

  

! 

"
1

= T # "
0

r,$, x( ) ,

T = cos% + sin %#& ,

% =
3

4

'

(
x )

1

(2

x
3

3
)
2x

2(

2
+ x (2

* 

+ 
, 

- 

. 
/ 

0 

1 
2 

3 

4 
5 #
1

r

 

If we add a small offset in the horizontal plane to the original location, then the new location 

is given by the following formula. 

  

! 

"
1
"
0

+ #xy( ) = T $ "
0

+ #( ) ,  where T = cos% + sin%$& ,

"
1
"
0

+ #xy( ) = T $ "
0

+ #( ) = cos
%

2
+ sin

%

2
$k

' 

( 
) 

* 

+ 
, $ ri + #i( )i + rj + # j( )j+ rkk( )$ cos

%

2
- sin

%

2
$k

' 

( 
) 

* 

+ 
, 

= ri + #i( )cos% - rj + # j( ) sin %( ) i + rj + # j( )cos% + ri + #i( ) sin %( ) j+ rk k

 

The transformation quaternion for horizontal offsets is this is the difference between the two 

! 

"
1
 vectors, divided by the offset. 
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! 

QH =
"
1
"
0

+ #( ) $ "1 " 0( )
#

=
#i cos% $ # j sin%( ) i + # j cos% + #i sin %( ) j

#i i + # j j

= #i cos% $ # j sin %( ) i + # j cos% + #i sin %( ) j[ ]&
$ #i i + # j j( )
#i
2 + # j

2

= cos% + sin %k = T

 

The quaternion is the same rotation as was applied to the initial location so the first 

component of the orientation matrix is T.  

! 

Q
x

= T .The transformed y axis is the initial y axis 

rotated as specified by the rotation quaternion T. 

As before, the change with vertical offsets is more complex.  There is a shear component and 

a rotation component. 

    

! 

"
1

x + #( ) = cos

) 
$ 

2
+ sin

) 
$ 

2
k

% 

& ' 
( 

) * 
+ rii + rj j+ rk + #k( )k[ ]+ cos

) 
$ 

2
, sin

) 
$ 

2
k

% 

& ' 
( 

) * 
,

) 
$ =

3

4

-

.3
,

x + #( )
3

3
+ x + #( )

2

.
% 

& 
' 
' 

( 

) 
* 
* 
+
1

r
,

"
1

x + #( ) = ri cos
) 
$ , rj sin

) 
$ ( ) i + rj cos

) 
$ + ri sin

) 
$ ( )j+ rk + #( )k ,

"
1

x( ) = ri cos$, rj sin$( ) i + rj cos$+ ri sin $( )j+ rk( )k ,

$ =
3

4

-

.3
,

x
3

3
+ x

2.
% 

& 
' 

( 

) 
* +
1

r
,

"
1

x + #( ) , "1 x( ) = ri cos
) 
$ , cos$( ) , rj sin

) 
$ , sin $( )( ) i + rj cos

) 
$ , cos$( ) + ri sin

) 
$ , sin $( )( )j+ #k ,

= ,2+ ri S , rj C[ ] i , rjS + ri C[ ]{ } j + #k ,  where

S = sin

) 
$ + $

2
+ sin

) 
$ , $

2

/ 

0 
1 

2 

3 
4  and C = cos

) 
$ + $

2
+ sin

) 
$ , $

2

/ 

0 
1 

2 

3 
4 ..

 

The transformed z axis is given by the last equation.  When it is all written out in terms of the 

parameters of the torsion, it is a complex expression.  However, it is fundamentally a vector, so 

we can re-write it as follows. 

! 

" # = ˆ $ i + ˆ % j+ ˆ & k .  
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The basis vectors of the transformed frame of reference can be written as in terms of the 

expressions just derived. 

! 

fT = T " i,T " j, ˆ # i + ˆ $ j+ ˆ % k{ } . 

 Note that we can write the first two terms as simple quaternion multiplication because it is set 

that i and j lie in the plane of T.  If that were not true, then they would be written as conical 

rotations. 

Since the transformation of the first two components rotates both identically, we can write the 

first component of the orientation matrix as the common transformation, that is, T.   

! 

Q
x"x 

=
T # i

i
= T # i#$i = T = cos% + sin%#k . 

The second component depends upon finding the ratio of the third axis to the second axis.  

Then, the second axis is rotated through a right angle about the axis of the ratio to obtain its 

projection into the plane perpendicular to the second axis. 

! 

Qyz =
ˆ " i + ˆ # j+ ˆ $ k

T % j
=
1

T
2
% ˆ " i + ˆ # j+ ˆ $ k %T %&j .  

The basis vectors are unit vectors and the rotation quaternion, T, is a unit quaternion, 

therefore, the expression reduces to a simpler form. 

! 

Qyz = ˆ " i + ˆ # j+ ˆ $ k( )% cos& + sin&%k( )%'j ,

= ˆ # cos& ' ˆ " sin&( ) + ˆ $ cos& i + ˆ $ sin & j' ˆ " cos& + ˆ # sin &( )k .
 

The cosine of the angle of the quaternion is the scalar term divided by the norm of the 

quaternion. 

! 

" yz = cos
#1

ˆ $ cos% # ˆ & sin %

ˆ & 
2

+ ˆ $ 
2
+ ˆ ' 2

( 

) 

* 
* 

+ 

, 

- 
- 

. 

The projection of z into the plane of the transformed y is expressed by the 

! 

Qyz  with an angle 

of 

! 

" 2  multiplied times

! 

y .  The y transform is 

! 

"i sin# + jcos# . 
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! 

z =
ˆ " cos# i + ˆ " sin # j$ ˆ % cos# + ˆ & sin #( )k

ˆ % 2 + ˆ & 2+ ˆ " 2

' 

( 

) 
) 

* 

+ 

, 
, 
- $i sin # + jcos#( )

=
1

ˆ % 2 + ˆ & 2+ ˆ " 2
cos# ˆ % cos# + ˆ & sin#( ) i + sin # ˆ % cos# + ˆ & sin #( ) j + ˆ " k[ ]

 

The three basis vectors for the 

! 

y  orientation are : 

! 

˜ x =
1

ˆ " 2 + ˆ # 2+ ˆ $ 2
ˆ $ cos% i + ˆ $ sin% j& ˆ " cos% + ˆ # sin %( )k[ ],

y = &i sin% + jcos% ,

˜ z =
1

ˆ " 2 + ˆ # 2+ ˆ $ 2
cos% ˆ " cos% + ˆ # sin %( ) i + sin % ˆ " cos% + ˆ # sin%( ) j + ˆ $ k[ ] .

 

Clearly, the swing quaternion is the T that we started out with, because it swings the y axis to its 

transformed direction.  Rotation about the k does not change the z axis, therefore the 

intermediate value of the z axis is k.  We can proceed to the calculation of the spin quaternion. 

  

! 

Qspin =
˜ z 

zi

=

1

ˆ " 2 + ˆ # 2+ ˆ $ 2
cos% ˆ " cos% + ˆ # sin%( ) i + sin % ˆ " cos% + ˆ # sin %( ) j + ˆ $ k[ ]

k

=
1

ˆ " 2 + ˆ # 2+ ˆ $ 2
cos% ˆ " cos% + ˆ # sin %( ) i + sin % ˆ " cos% + ˆ # sin%( ) j + ˆ $ k[ ]&'k

=
1

ˆ " 2 + ˆ # 2+ ˆ $ 2
ˆ $ ' sin % ˆ " cos% + ˆ # sin %( ) i + cos% ˆ " cos% + ˆ # sin%( ) j[ ] .

 

The rotation quaternion that transforms the original basis vectors into the transformed basis 

vectors is the product of the swing and spin quaternions. 

  

! 

Qy"y =Qspin #Qswing =Qspin #T

=
1

ˆ $ 2 + ˆ % 2+ ˆ & 2
ˆ & ' sin ( ˆ $ cos( + ˆ % sin (( ) i + cos( ˆ $ cos( + ˆ % sin(( ) j[ ]# cos( + sin (#k[ ]

=
1

ˆ $ 2 + ˆ % 2+ ˆ & 2
ˆ & cos( + ˆ $ cos( + ˆ % sin(( ) j + ˆ & sin (k[ ] .
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The last transformation is the rotation that moves the original basis into the frame of reference 

for the 

! 

z  axis.  The 

! 

z  axis was derived above and the projection of the 

! 

x  axis is the rotation of 

! 

z  that carries it 90° towards the 

! 

x  axis. 

! 

x = cos" + sin "#k( )# i

= cos"# i + sin "# j ,

z =
1

ˆ $ 2 + ˆ % 2+ ˆ & 2
cos" ˆ $ cos" + ˆ % sin "( ) i + sin " ˆ $ cos" + ˆ % sin "( ) j + ˆ & k[ ] ,

Qz 'x =
cos"# i + sin"# j

1

ˆ $ 2 + ˆ % 2+ ˆ & 2
cos" ˆ $ cos" + ˆ % sin "( ) i + sin " ˆ $ cos" + ˆ % sin "( ) j + ˆ & k[ ]

=
1

ˆ $ 2 + ˆ % 2+ ˆ & 2
# cos"# i + sin "# j( )#( cos" ˆ $ cos" + ˆ % sin"( ) i + sin " ˆ $ cos" + ˆ % sin "( ) j + ˆ & k[ ]

=
ˆ $ cos" + ˆ % sin "( ) ( ˆ & sin" i + ˆ & cos" j

ˆ $ 2 + ˆ % 2+ ˆ & 2

 

This last expression says that the 

! 

z  axis rotated in a radial plane as it approaches 

! 

x .  That is in 

accord with intuition.  To compute the projection of 

! 

x  into the plane perpendicular to 

! 

z , we 

apply the quaternion to rotate 

! 

z  through 90°. 

! 

˜ x =Qz "x 

#

2

$ 

% 
& 
' 

( 
) * z 

=
+ˆ , sin - i + ˆ , cos- j

ˆ . 2 + ˆ / 2+ ˆ , 2
*

1

ˆ . 2 + ˆ / 2+ ˆ , 2
cos- ˆ . cos- + ˆ / sin -( ) i + sin - ˆ . cos- + ˆ / sin -( ) j + ˆ , k[ ]

=
1

ˆ . 2 + ˆ / 2+ ˆ , 2
* +ˆ , sin- i + ˆ , cos- j( )* cos- ˆ . cos- + ˆ / sin -( ) i + sin - ˆ . cos- + ˆ / sin -( ) j + ˆ , k[ ]

=
1

ˆ . 2 + ˆ / 2+ ˆ , 2
* ˆ , 2 cos- i + ˆ , 2 sin- j+ ˆ , ˆ . cos- + ˆ / sin -( )k( ) .

 

The basis vectors for the 

! 

z  frame of reference are as follows. 

! 

˜ x =
1

ˆ " 2 + ˆ # 2+ ˆ $ 2
% ˆ $ 2 cos& i + ˆ $ 2 sin& j' ˆ $ ˆ " cos& + ˆ # sin &( )k( ) ,

˜ y = sin& i + cos& j ,

z =
1

ˆ " 2 + ˆ # 2+ ˆ $ 2
cos& ˆ " cos& + ˆ # sin&( ) i + sin & ˆ " cos& + ˆ # sin &( ) j + ˆ $ k[ ] .
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The swing quaternion for 

! 

z  is the ratio of 

! 

z  to 

! 

z. 

  

! 

Qswing =

1

ˆ " 2 + ˆ # 2+ ˆ $ 2
cos% ˆ " cos% + ˆ # sin %( ) i + sin % ˆ " cos% + ˆ # sin%( ) j+ ˆ $ k[ ]

k

=
1

ˆ " 2 + ˆ # 2+ ˆ $ 2
cos% ˆ " cos% + ˆ # sin %( ) i + sin % ˆ " cos% + ˆ # sin%( ) j+ ˆ $ k[ ]&'k

=
1

ˆ " 2 + ˆ # 2+ ˆ $ 2
ˆ $ ' sin % ˆ " cos% + ˆ # sin %( ) i + cos% ˆ " cos% + ˆ # sin%( ) j[ ] .

 

to compute the intermediate value of the x axis, we rotate the original 

! 

x = i axis according to the 

rotation quaternion 
  

! 

Qswing .   

 


