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Introduction

This essay considers how we move our bodies: as a whole and the individual parts, alone and together.  Initially, this seems to be a trivial problem.  Movement is something that we do automatically, normally with minimal conscious thought.  It is only when we loose some of the mental control that automatically handles movement, for instance, following a head injury, a stroke, or any of a great many neurological disorders, that we realize how much effort is involved and what a complex process movement control is.  

When we examine movement closely, it becomes apparent that movement of the body in three-dimensional space is actually conceptually rather complex.  This is true even if we leave out gravitation and inertia or forces in general.  We will be examining the movement itself, rather than the forces required to flex an elbow or rotate a vertebra.  If we consider muscles, it will be in terms of their length, not the force that they are generating.  Still, considering muscle length can tell one a great deal about the requirements for controlling muscle force.

One of the complications for understanding anatomical movement is that it is non-linear.  Most anatomical movements are rotations about a joint and rotational movement in three-dimensions is non-linear in the sense that the order in which one carries out a series of non-coplanar rotations determines where one ends up and one’s orientation.  Different orderings produce different outcomes.  

We will consider anatomical movements in a very abstract sense, considering the essence of the movements.  We will start with very simple and fundamental ideas and look at how they describe movement.  The two ideas that lie at the base of all that follows are orientation and rotation in three dimensions.

Orientation and its Manipulation

Fundamental to understanding anatomical movements is the concept of orientation.  For instance, consider a hand.  When using your hand it is not sufficient that it be placed at a particular location in space.  It must also be correctly oriented.  A hand is clearly orientable.  It has a palmar surface and a dorsal surface, fingers at one end and a wrist at the other, a thumb on one side and a pinkie on the other.  If presented with a right hand and a left hand, we have no trouble telling one from the other.  We know how a hand is oriented in space.  Moreover, the orientation of one’s hand is functionally relevant.  If one reaches to grasp a pole, it is important that one’s hand be in the right location, adjacent to the pole, but it is equally important that it be properly oriented.  A hand cannot grasp a pole unless the palmar aspects of the fingers are directed towards the pole.  Orientation is almost always an important consideration in describing anatomical motion.

Anatomical objects are virtually never symmetrical in the sense that sphere is symmetrical or a smooth rod is symmetrical.  Therefore, anatomical movement is different from movement of a ball or a baseball bat in that orientation must be considered.  In addition, joints allow only certain types of movements, so only certain configurations are possible.  When faced with a movement problem, it may be difficult to find a solution that places a body part at the desired location with the desired orientation.  Anyone who has tried to work is a cramped space knows that sometimes you can reach the objective, but just can’t get leverage.

The first problem that must be solved is finding a way that orientation can be expressed that allows one to calculate with it.  In fact, we need a way to deal with location and extension as well, preferably at the same time and in the same manner.  The solution that will be offered here is a mathematical object called a framed vector, actually a collection of vectors that encapsulate location (where the hand is in space), extension (where the first carpal-metacarpal joint is relative to the hand), and orientation (how the had sits in space).  Framed vectors allow one to describe the anatomy of a structure in a manner that allows one to compute with the description to obtain the description of that structure after a series of movements.

Having described the anatomical structure, the second problem is describing the movement that it is experiencing.  To address that problem, we use the fact that rotations in three-dimensional space follow the same rules as quaternion multiplication.  Quaternions are abstract mathematical objects, discovered by W.R. Hamilton in the late 1800’s as a generalization of complex numbers to three dimensions.  They have many elegant and unexpected properties, but most relevant to the current problem is that also combine in ways that exactly replicate the properties of rotations in three-dimensions.  This makes them very useful for studying anatomical rotations.

With these two concepts, we will explore the nature of anatomical movement in some detail.  The protocol will generally be to describe the anatomy in terms of framed vectors, for the moving parts, and quaternions, for the axes of rotation.  The framed vectors will be transformed by the actions of the quaternions to produce new descriptions of the moving parts that can be interpreted in terms of the original anatomical structures and insight drawn from the observed changes.

Expressing Orientation

Most of what follows builds upon describing anatomical structures in terms of collections of vectors that code their location, extension, and orientation, and applying quaternion analysis to the description of how those descriptions are transformed by movement.  This approach has been applied to a number of anatomical systems, but we will concentrate upon the abstract process in what follows.

[image: image1.jpg]
The frame of reference for the hand is expressed as three orthogonal vectors 
[image: image2.wmf], the direction vectors for a universal coordinate system.  The three axes are the direction of the middle finger (i), the direction of the thumb (j), and the direction perpendicular to the back of the hand (k), respectively.

Defining Some Useful Concepts

Frame of Reference

If presented with a right hand and a left hand, it is easy to tell which is which, because each hand has a dorsal and palmar surface, fingers and a wrist, a thumb and a pinkie finger and the relationships between these aspects of the hand are different for each hand.  Let us consider how one might express that quality of the hands that set them apart, a quality that we will call orientation.

Imagine a space that is defined by three mutually orthogonal vectors.  For historical reasons, let the three vectors be labeled as i, j, and k.  We could equally well use x, y, and z or e1, e2, and e3.  The reason for the choice will be made clear shortly.  Note that bolded letter will used to label vectors; bolded and italic letters will be used to label quaternions; and unbolded non-italic letters will be used to denoted real numbers or scalars.

Consider a hand resting in that space in such a manner that a vector directed towards the middle finger is parallel with the first coordinate vector (
[image: image3.wmf]), a second, perpendicular, vector directed towards the thumb points in the direction of the second coordinate vector 
[image: image4.wmf], and a third vector that is perpendicular to the other two and directed out of the dorsum of the hand is parallel with the third coordinate vector 
[image: image5.wmf].  We can express the orientation of the hand as this set of vectors.


[image: image6.wmf]
Such a set of mutually orthogonal vectors that encode orientation will be called a frame of reference.  In a similar manner, we can encode the orientation of any structure by a frame of reference in which three mutually orthogonal directions are expressed as functions of the universal coordinate system.

Note that the frame of reference for the right hand is absolutely different from the frame of reference for the left hand.   If placed side by side, the thumb vectors point in opposite directions. There is no sequence of rotations that convert one into the other.  In fact, there are only two types of frames of reference that can exist in three dimensions and these are they.  If the orientation vectors of a frame of reference are written in order and the fingers of the right hand are curled so that they are in the direction that carries the first vector into the second vector and the thumb points in the direction of the third vector, then the system is said to be right-handed.  If the gesture works in the same way, but for the left hand, then the system is said to be left-handed.

If a hand is resting in a particular position, one can readily characterize its orientation in terms of a coordinate system.  The hand in the above drawing is aligned with the universal coordinates, 
[image: image7.wmf].  If the hand were lying on its side with the middle finger pointing in the same direction and the thumb up, then the frame of reference would be 
[image: image8.wmf].   We can see this because the thumb vector is in the direction that the dorsal vector was pointing previously 
[image: image9.wmf] and the dorsal vector is pointing in the opposite direction as the thumb vector was 
[image: image10.wmf]. 

Before we start to develop the formalism for computing the changes in orientation that have just been introduced, we need to spend a brief time considering the concept of quaternions.  Then we will return to the description of this change in the orientation of the hand.

Quaternions

If we are to calculate the transformation that that structure will experience, then we need a way of expressing rotations that will interact with such vector descriptors.  It happens that quaternions are excellent choices for such calculations.

First, what are quaternions and how do they express rotations of vectors?  There are many ways that one might approach quaternions, depending on one’s needs, but, for present purposes, a quaternion will be defined as the ratio of two vectors.  If you are conversant with vector analysis, then you know it does not make sense to take the ratio of two vectors.  The operation is undefined in vector analysis.  However, consider what one might mean by the ratio of two vectors.  If one has a vector, 
[image: image11.wmf], and one wishes to transform it into the vector 
[image: image12.wmf], then one may rotate 
[image: image13.wmf] in the plane defined by 
[image: image14.wmf] and 
[image: image15.wmf] through the angular excursion between the two vectors, 
[image: image16.wmf] degrees, and multiply 
[image: image17.wmf] by the ratio of their lengths.  It turns out that if the unit vector perpendicular to the plane formed by 
[image: image18.wmf] and 
[image: image19.wmf] is 
[image: image20.wmf] and the ratio of the length of 
[image: image21.wmf] to the length of 
[image: image22.wmf] is 
[image: image23.wmf], then the ratio of 
[image: image24.wmf] to 
[image: image25.wmf]is given by the quaternion R.


[image: image26.wmf]
If we rearrange the terms in the expression then it is readily seen that the rotation quaternion R times the vector 
[image: image27.wmf] is equal to the vector 
[image: image28.wmf].


[image: image29.wmf]
It follows that any vector can be transformed into any other vector by a quaternion.  Given any two vectors, we can calculate the appropriate quaternion.

Consider a trivial example to see how one may perform these calculations.  Let the coordinate system have the basis vectors 
[image: image30.wmf].  Let the starting vector be 
[image: image31.wmf] and the ending vector be 
[image: image32.wmf].  The ratio of these two vectors is easily computed.


[image: image33.wmf]
  The details of the calculation will considered below, but the result is that the rotation that carries the starting vector into the ending vector is a rotation of 45° about the k axis while multiplying the length of the starting vector by 
[image: image34.wmf].  We know this to be the case by casual inspection, so the calculation was not necessary, but the answer is far from obvious when the two vectors are not so nicely chosen. 

Rotation Quaternions

Consider how the movement that carries the hand from the first orientation to the second might be expressed.  The rotation was about an axis that was parallel with the first coordinate axis, 
[image: image35.wmf], and it was through an angular excursion of 90°.  We can express this rotation as a quaternion in which 
[image: image36.wmf] is the vector of the quaternion and 90° is the angle of the quaternion.  Rotation quaternions may be expressed as follows.


[image: image37.wmf]
T is the tensor of the quaternion, essentially its length.  For rotation quaternions, 
[image: image38.wmf].  The angle of the quaternion, 
[image: image39.wmf], is the angular excursion of the rotation.  In this case, 
[image: image40.wmf].  Finally, 
[image: image41.wmf], the vector of the quaternion is the axis of rotation.  In the current situation, 
[image: image42.wmf].  Multiplication of a vector by a quaternion that has a vector of the quaternion perpendicular to the vector is equivalent to rotating the vector through the angle of the quaternion in the plane perpendicular to the vector of the quaternion.  


[image: image43.wmf]
The second and third orientation vectors for the resting hand are perpendicular to the axis of rotation, therefore we can use this property of quaternions to calculate the effect of rotating each through 90°.


[image: image44.wmf]
Since 
[image: image45.wmf] the expressions reduce to the products of two coordinate axes, which give the right answers.  However, understanding why they give the right answers requires some background.  The following will also explain why we used 
[image: image46.wmf] for the coordinate axes.

Quaternion Addition and Multiplication

Quaternions can also be written as follows.


[image: image47.wmf]
The 
[image: image48.wmf] in the first term is real unity and it is usually not written, just like it not usually written in complex numbers.  The 
[image: image49.wmf] are unit vectors in three mutually orthogonal directions.  Consequently, a quaternion is the sum of a real number, or scalar, (a) and a vector 
[image: image50.wmf].

Quaternions add algebraically.


[image: image51.wmf]
Quaternions also multiply algebraically, but doing so creates terms with the products of two basis vectors.  We have to determine how terms that include 
[image: image52.wmf] are to be interpreted.  It turns out that if one maintains the order of the vector elements, then the product of two basis vectors is plus or minus the third.  That leaves us with the question of whether the sign is positive or negative in any particular case and what to do if a vector is multiplied by itself.  The following figure illustrates an easy way to remember the conventions.

[image: image53.png]
Multiplication of two basis vectors in the clockwise direction yields the third vector.  Multiplication in the counter-clockwise direction yields the negative of the third vector. Multiplication of a vector by itself yields -1.  Multiplication of a vector by 1 yields the vector.

If a vector is multiplied by itself, then the product may be replaced with 
[image: image54.wmf], so all the vectors are imaginary numbers.  Imaginary numbers are numbers that can be expressed as a real number times the square root of minus one, 
[image: image55.wmf].  However, since the product of any two vectors is the third or its negative, they are three different imaginary numbers.  If they were the same then the product of any two basis vectors would be minus one.  Having established these rules, let us consider the product of two quaternions.  First we multiply them algebraically, being careful to maintain the order of the basis vectors.


[image: image56.wmf]
Then we convert all the couplets of basis vectors into single basis vectors as describe above.


[image: image57.wmf]
Finally, we rearrange the terms so as to collect similar terms.


[image: image58.wmf]
This is a lengthy calculation and it is essential that one keep the vector terms in the correct order, leaving considerable room for bookkeeping errors.  However, with the use of computers, this is a minor inconvenience.  One just has to make sure that the quaternions that are to be multiplied are written in the correct order.  The examples that will be used in this discussion are simple multiplications that can be checked by inspection.  The example that we started with, the rotation of a hand about its axis through the middle finger, can be read off the illustration of the multiplication of vectors.

The Inverse of a Quaternion

The calculation of the rotation of the hand was possible using the definition of a quaternion, namely, that a quaternion is the ratio of two vectors.  If we have two vectors, 
[image: image59.wmf] and 
[image: image60.wmf], then the transform that carries 
[image: image61.wmf] into 
[image: image62.wmf] is the quaternion 
[image: image63.wmf], where T is the ratio of the lengths of the vector, q is the angular excursion between the vectors and v is the normal vector to the plane that contains the two vectors.


[image: image64.wmf]
If we know 
[image: image65.wmf] and 
[image: image66.wmf], then we can compute 
[image: image67.wmf].  Let 
[image: image68.wmf] and 
[image: image69.wmf], then the ratio of 
[image: image70.wmf] to 
[image: image71.wmf] is computed as follows.


[image: image72.wmf]
More generally, if R and S are quaternions, then their ratio is a quaternion that is expressed as follows.


[image: image73.wmf]

[image: image74.wmf]
In order to compute the ratio of two vectors we had to invoke the inverse of a quaternion and define it in terms of the components of the quaternion.  The reciprocal of a quaternion is the quaternion with the same scalar and its vector is the opposite direction, divided by the square of the tensor.  As you can readily see, the tensor of the inverse is the reciprocal of the tensor of the quaternion.  Vectors are quaternions with scalars equal to zero, therefore we can apply the formula for the ratio of quaternions to vectors and that is exactly what was done above.  

We can rearrange the expression for a quaternion as a ratio of two vectors to obtain the relationship that we used to rotate the hand’s orientation.


[image: image75.wmf]
Let us pause briefly to make explicit a point that has been assumed up to now.  Since the order of quaternion multiplication is important, 
[image: image76.wmf], how do we interpret the ratio of 
[image: image77.wmf] to 
[image: image78.wmf].  It turns out that it does not matter as long as you are consistent.  The usual practice is to place the denominator second.


[image: image79.wmf]
Euler’s Formula

The definition of a quaternion allows one to compute the consequences of rotating any vector into any other vector in the plane perpendicular to the vector of the quaternion, which will be called planar rotations.  However, what if the vector of the quaternion, that is, the axis of rotation, is not perpendicular to the vector that is being rotated?  If you try using the same expression, you will find that the result is not a vector, but a quaternion.  By following a line of reasoning that will not be considered here, it can be shown that the appropriate expression for the rotation of vectors that are not perpendicular to the axis of rotation is Euler’s Formula. 


[image: image80.wmf]
The quaternion q is the same as 
[image: image81.wmf], except that the angle of the quaternion is half that for 
[image: image82.wmf].  The inverse of q is obtained as was just shown.  Since most rotation quaternions are generally unit quaternions, therefore do not change the length of the rotating vector, their tensor is 1.0.  Consequently, we need only find the angle of 
[image: image83.wmf], that is, the arc cosine of the scalar of 
[image: image84.wmf], divide it by two, and substitute the half angle into the expression for q.  The expression for 
[image: image85.wmf], under these circumstances, can readily be written out.


[image: image86.wmf]
Consider the third vector in the hand rotation, the one through the middle finger, and the one about which the rotation occurred.  The axis of rotation was the i axis and the rotating axis was i.  The calculation is trivial, but still informative.


[image: image87.wmf]
It is not surprising that rotating a vector about its axis leaves it unchanged, but it is gratifying to see that our method yields the correct result at the extreme value.  It also gives the correct result at the other extreme, 90°.


[image: image88.wmf]
These are the same results we obtained above, using the formula for planar rotation.

We have shown that orientation can be expressed as a set of three mutually orthogonal vectors and shown how to obtain the results of rotating such vectors about an axis of rotation, using either the planar rotation formula or Euler’s formula.  Since Euler’s formula works whether the rotating vector stays in a plane or not, it is safest to assume that all rotations are conical rotations and use Euler’s formula in all such situations.  At this point we can write the following expression to indicate that one should apply the same rotation to all three vectors in a set of orientation vectors.


[image: image89.wmf]
For example, the calculation that we have just considered is written as follows.


[image: image90.wmf]
Framed Vectors

Orientation is not the only attribute of an object that is changed by rotation.  If the rotation does not occur about an axis of rotation through the center of an object, then the location of the object changes.  If the object is extended and we have some structure attached to the object that lies at some distance from the center of the object, such as a spine or bump, then it is also moved by rotation.  The way in which an extension vector is transformed by a rotation is different from the way a location vector is transformed and both are different from the transformation of a frame of reference.  Which is not to say that they are not interconvertible.  An extension vector is the difference between two location vectors.  It is often easiest to express a set of extension vectors in terms of the unit vectors of the frame of reference and recompute their values after transforming the frame of reference.  However, the three types of vectors are different and it is best to remember that, especially when taking shortcuts.  

Location vectors are always relative to an origin, although the origin may be changed as required.  For instance, when transforming locations about an axis of rotation that is not through the center of the object, one temporarily moves the origin to a point on the axis of rotation, computes the consequences of the rotation, and then moves the origin back to its original position.

Extension vectors are always relative to a point on the moving object.  The location of the axis of rotation is irrelevant to the transformation of extension vectors, even though they can be expressed as the difference between two locations.

Although we often speak of attaching a frame of reference to an object, the three mutually orthogonal unit vectors in a frame of reference have no location in space.  They are directions and may be anywhere in space with equal validity, therefore lack location.

To deal with all of these attributes of the object, we need a mathematical object that can be manipulated similarly to the way that we have been manipulating frames of reference when computing changes in orientation with rotation.  The object created for this purpose is the framed vector.  The framed vector is an ordered set of vectors that encapsulate an anatomical description and allow a natural computation of the changes in that description that occur with translation and rotation.  Let us now consider the formalism that is used in creating framed vectors for anatomical description.

Anatomical movement of a shoulder, vertebra, or eye is usually a rigid body motion, where the object moves as a unit, with minimal internal distortion.  This means that we can use a point to characterize the location of the object.  We can use one or more fixed directed distances to specify the location of its parts relative to a local reference point on the object, that is its extension.  We can attach a local coordinate system to specify the orientation of the object.  

[image: image91.png]
An anatomical object is characterized a set of vectors, called a framed vector, that may include a location vector, one or more extension vectors, and a set of three mutually orthogonal unit vectors that form a frame of reference.  The location vector specifies its location relative to the origin of a universal coordinate system.  The extension vector(s) specify points on the structure relative to its location.  The frame of reference vectors define its orientation.

Formally, a framed vector, 
[image: image92.wmf], is a set of vectors that specify the location, l, extension, 
[image: image93.wmf], and frame of reference, 
[image: image94.wmf], for an anatomical structure.


[image: image95.wmf]
Framed vectors may have fewer or more vectors, depending upon the situation and the types of calculations that one will be performing with them.  Sometimes the location of the structure is not of interest and one does not manipulate 
[image: image96.wmf], therefore, there may be no location vector.  Often, the extension vector is set equal to one of the frame of reference vectors, therefore is redundant.  There could also be thousands of extension vectors, if one were describing the structure’s shape in detail, but it is usually easier in such situations to express the extension vectors in terms of the frame of reference, compute the change in the frame of reference, and then express the extension vectors in terms of the new frame vectors.  Then, the extension vectors are a separate vector array that is processed separately.  Frame of reference vectors are almost always unit vectors, because they are directions.  There may be occasions to have more than one frame of reference.  Clearly, framed vectors are a very flexible concept.  One creates them to fit the situation that is being described and the information one wants to extract about the rotations of the object.

An Example Problem

Let us consider a problem that uses the concepts that have been introduced so far.  Sticking with the hand, let it experience a 180° rotation from fully prone to fully supine, followed by 90° flexion of the elbow.  We start by taking the center of the trochlea of the elbow as our origin.  To keep the problem simple we assume that the trochlea is a symmetrical right cylinder with its axis aligned with the j axis.  The location of the hand will be about the center of the carpal bones, a distance of 30 in the direction of the 
[image: image97.wmf] axis 
[image: image98.wmf].  Let the distal radio-ulnar joint be 3 units proximal and 2 units lateral to the location of the hand 
[image: image99.wmf].  Finally let the frame of reference be as described above, with the 
[image: image100.wmf] axis aligned with the metacarpal of the middle finger, the j axis pointing in the direction of the thumb, and the k axis pointing out of the dorsum of the hand when it is in full pronation.  We assume that the axis of rotation for pronation/supination is aligned with the 
[image: image101.wmf] axis and it passes through the center of the radio-ulnar joint.


[image: image102.wmf]
The axis of the flexion is aligned with the 
[image: image103.wmf] axis and it passes through the trochlea.


[image: image104.wmf]
The frame of reference for the hand in pronation can now be written.


[image: image105.wmf]
For the supination, it is necessary to move the origin to the center of the radio-ulnar joint and multiply by the quaternion for the rotation.


[image: image106.wmf]
The transformation for the flexion is about an axis through the origin, therefore it is necessary only to multiply by the rotation quaternion.


[image: image107.wmf]
The transformation is straightforward and one can readily check it by inspection.  This is because the description of the anatomy was kept simple and the rotations were about the basis vectors.  If the rotations had been about axes oblique to the basis vectors, then the result would not be as obvious, but the calculation would be no more difficult.






1

15
2/4/06

_1055161633.unknown

_1056782874.unknown

_1056949701.unknown

_1057126619.unknown

_1057129555.unknown

_1057130526.unknown

_1057134135.unknown

_1057134484.unknown

_1057134769.unknown

_1057137776.unknown

_1057137798.unknown

_1057134877.unknown

_1057134622.unknown

_1057134206.unknown

_1057131939.unknown

_1057131986.unknown

_1057130559.unknown

_1057129588.unknown

_1057130021.unknown

_1057129576.unknown

_1057127586.unknown

_1057128749.unknown

_1057129526.unknown

_1057128448.unknown

_1057127367.unknown

_1057127574.unknown

_1057127126.unknown

_1056950450.unknown

_1057044669.unknown

_1057045280.unknown

_1057047907.unknown

_1057123114.unknown

_1057123156.unknown

_1057045371.unknown

_1057044707.unknown

_1056951828.unknown

_1057044203.unknown

_1056950488.unknown

_1056950297.unknown

_1056950310.unknown

_1056950443.unknown

_1056949995.unknown

_1056784274.unknown

_1056786148.unknown

_1056949400.unknown

_1056949496.unknown

_1056949460.unknown

_1056949473.unknown

_1056949422.unknown

_1056786676.unknown

_1056785895.unknown

_1056786020.unknown

_1056785383.unknown

_1056785824.unknown

_1056784512.unknown

_1056783141.unknown

_1056783714.unknown

_1056784007.unknown

_1056783460.unknown

_1056783004.unknown

_1056783051.unknown

_1056782960.unknown

_1056780960.unknown

_1056781977.unknown

_1056782380.unknown

_1056782601.unknown

_1056782012.unknown

_1056781707.unknown

_1056781787.unknown

_1056781156.unknown

_1055169346.unknown

_1056780722.unknown

_1056780856.unknown

_1055169796.unknown

_1055170265.unknown

_1056714573.unknown

_1055169874.unknown

_1055169762.unknown

_1055161901.unknown

_1055169181.unknown

_1055161801.unknown

_1055161536.unknown

_1055161610.unknown

_1055151432.unknown

_1055161485.unknown

_1055146975.unknown

_1055147326.unknown

